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A B S T R A C T

Compliant Mechanisms (CMs) are currently employed in several engineering applications requiring high pre-
cision and reduced number of parts. For a given mechanism topology, CM analysis and synthesis may be de-
veloped resorting to the Pseudo–Rigid Body (PRB) method, in which the behavior of flexible members is ap-
proximated via a series of rigid links connected by spring-loaded kinematic pairs. From a CM analysis standpoint,
the applicability of a generic PRB model requires the determination of the kinematic pairs’ location and the
stiffness of a set of generalized springs. In parallel, from a design standpoint, a PRB model representing the
kinetostatic behavior of a flexible system should allow to compute the flexures’ characteristics providing the
desired compliance. In light of these considerations, this paper describes a Computer-Aided Design/Engineering
(CAD/CAE) framework for the automatic derivation of accurate PRB model parameters, on one hand, and for the
shape optimization of complex-shape flexures comprising out-of-plane displacements and distributed com-
pliance. The method leverages on the modelling and simulation capabilities of a parametric CAD (i.e. PTC Creo)
seamlessly connected to a CAE tool (i.e. RecurDyn), which provides built-in functions for modelling the motion
of flexible members. The method is initially validated on an elementary case study taken from the literature.
Then, an industrial case study, which consists of a spatial crank mechanism connected to a fully-compliant four-
bar linkage is discussed. At first, an initial sub-optimal design is considered and its PRB representation is au-
tomatically determined. Secondly, on the basis of the PRB model, several improved design alternatives are
simulated. Finally, the most promising design solution is selected and the dimensions of a flexure with non-
trivial shape (i.e. hybrid flexure) is computed. This technique, which combines reliable numerical results to the
visual insight of CAD/CAE tools, may be particularly useful for analyzing/designing spatial CMs composed of
complex flexure topologies.

1. Introduction

Differently from rigid-body mechanisms, which transfer forces and
displacements employing traditional kinematic pairs based on con-
jugate surfaces, Compliant Mechanisms (CMs) gain at least some of
their mobility from the deflection of elastic members [1]. Thanks to the
absence (or reduced use) of traditional kinematic pairs, which are based
on the relative motion of contacting surfaces, CMs are almost not af-
fected by wear, stick-slip phenomena and backlash, thus requiring
minimal maintenance with no need for lubrication. In addition, CMs
entail fewer components to achieve the desired mobility, possibly
leading to one-piece manufactured solutions. Nonetheless, the analysis
and synthesis of CMs is more complex when compared to traditional
mechanisms. Also, continuous rotational motions cannot be achieved
and CMs’ resistance to fatigue must be carefully addressed via either

experimental characterization (see, e.g., [2]) or dedicated simulation
tools (such as Ansys, see, e.g., [3]). Some CMs’ application areas include
near-constant-force and non-linear springs [4,5], compliant actuators
[6], monolithic cardan/spherical joints [7,8], micro-manipulators
[9,10] and micro-grippers [11] for precision assembly (see [12] for an
interesting review of design alternatives in this application area).

In general, CM design is primarily made difficult by the presence of
finite deflections of the flexible members, possibly causing undesired
deformations (i.e. cross-axis and parasitic error motions [13,14]), whose
effects are usually more pronounced in case the compliance is dis-
tributed along slender beam-like structures. Consequently, the necessity
to provide the engineering community with effective tools for CM
analysis and synthesis has led to the development of several theoretical
and/or numerical methods, which are well summarized in [15]. For
instance, the conceptual design of flexure-based CMs has been tackled

https://doi.org/10.1016/j.rcim.2018.07.015
Received 13 March 2018; Received in revised form 31 July 2018; Accepted 31 July 2018

⁎ Corresponding author.
E-mail address: pietro.bilancia@edu.unige.it (P. Bilancia).

Robotics and Computer Integrated Manufacturing 56 (2019) 287–302

Available online 01 September 2018
0736-5845/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/07365845
https://www.elsevier.com/locate/rcim
https://doi.org/10.1016/j.rcim.2018.07.015
https://doi.org/10.1016/j.rcim.2018.07.015
mailto:pietro.bilancia@edu.unige.it
https://doi.org/10.1016/j.rcim.2018.07.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2018.07.015&domain=pdf


 
by means of the Constraint-Based Design Approach (CBDA), which is
described in e.g. [16]. The CBDA leverages on the evidence that any
motion of a rigid body is basically determined by the constraints’ po-
sition and orientation (i.e. the constraint topology). Also, a mathematical
formulation of the CBDA, based on the screw theory formalism, has
been adressed in [17]. In parallel, the Freedom And Constraint Topology
(FACT) method, described in [18,19], combines qualitative information
about the flexure system's degrees of freedom and its constraint to-
pology, in order to investigate the relationships between all possible
flexure designs and related displacements. Then, the shapes of the de-
formable members, which allow realizing a desired motion of a point of
interest, are selected on a map in which all known shape combinations
are distributed over the design space. On the other hand, quoting [20],
when the FACT method is used for designing multi degree-of-freedom
CM, the quantitative modelling of the motion characteristics is not in-
volved. Therefore, FACT-based CM design can be improved by em-
ploying the so-called Position-Space-based Reconfiguration (PSR) ap-
proach, which allows to reconfigure a CM designed for a specific task,
with the aim of minimizing its parasitic motions [20–22]. Another al-
ternative method for generating viable initial solutions directly from
problem specifications leverages on the concept of basic compliant
building blocks, which are well described in [23]. However, whenever
strict tolerances on the desired displacement are required, a further
optimization procedure is necessary after the preliminary study. Fur-
ther, also topological optimization routines (or, more generally, con-
tinuum structure optimization approaches [15]) are applicable for the
synthesis of distributed compliant devices with complex shape [24].
Nonetheless, a well-known drawback of topology optimization is the
possibility to generate design solutions comprising singularities (like
punctual flexural structures). At last, more traditional techniques such
as the Finite Element Method (FEM) and, where available, analytical
solutions, might be very accurate but are far too complicated to be used
in either the conceptual design phase or in the industrial scenario,
where tools providing ease-of-use and limited computational costs are
largely needed.

In this context, a powerful method for CM analysis/synthesis is the
Pseudo-Rigid-Body (PRB) approach, which describes a complaint me-
chanism by a series of rigid links connected through spring-loaded ki-
nematic pairs, such as Spherical (S), Prismatic (P) or Revolute (R) joints
(also called characteristic pivots). Once a PRB topology has been selected
(namely, number and type of kinematic pairs), specific optimization
routines, such as gradient-based [25] or non-gradient based methods
[26], are employed in order to assess the values of both springs’ stiff-
ness and pivots’ location allowing a PRB-based mechanism to replicate
the CM kinetostatic behavior as close as possible. For example, Fig. 1a
depicts a planar parallel guide CM [27], namely a device largely em-
ployed in e.g. micro-motion stages [28] composed of a pair of fixed-
guided flexible beams [29]. In parallel, Fig. 1b shows a possible PRB
topology of such device, where each beam is modelled via two spring-
loaded R joints. In this particular case, for given loads and boundary
conditions, the pivots’ location and stiffness have been determined so as

to minimize the difference in the trajectory of body c (platform) in the
two cases (i.e. actual CM and related PRB model). In general, it may
happen that the chosen PRB representation does not capture the de-
formations of the compliant elements up to a level of accuracy that is
deemed sufficient for the application at hand, thus forcing the designer
to increase the PRB model's degrees of freedom. An example of such
topology modification is depicted in Fig. 1c, where each flexible
member is now represented via a spring-loaded 3R chain (as suggested
in [30]). In practice, PRB techniques basically offer two advantages: i)
enhanced computational efficiency during CM simulation if compared
to the FEM approach; ii) possibility to employ well established methods
and software tools, such as common multibody (MBD) environments,
specifically conceived for analyzing rigid-link mechanisms. On the
other hand, PRB limitations, whose acceptability has to be evaluated on
a case by case basis, may be listed as follows: i) possibility for the PRB
parameters to become load dependent in case of insufficient mobility of
the chosen PRB topology (refer to [31] for an overview and a com-
parison of several PRB topologies); ii) incapability to capture non-linear
effects arising during large deflections, such as material non-linearity,
geometric non-linearity and load-stiffening effects [13,15]. Henceforth,
CM architectures computed via the PRB method are usually validated
by means of FEM or experiments at the end of any design process.
Despite these limitations, PRB techniques have been successfully used
for identifying bi-stability [32], for evaluating CM workspaces [33], for
comparing compliant joints morphologies [34], and for model-based
control of compliant mechatronic devices [35].

Owing to this brief state-of-the-art overview, an assessment of the
previous researches highlights the following issues:

• The determination of the optimal PRB parameters starts from the
knowledge of the load-deflection characteristics of the CM under
investigation, which is usually derived resorting to 2D or 3D ana-
lytical models (e.g. straight beams with rectangular/circular cross
section or notch hinges [36–38]). This approach, based on closed
form solutions, is accurate and very useful when choosing and
benchmarking a suitable PRB topology. Nonetheless, purely analy-
tical methods fail to provide useful information when designing
generic flexure geometries (see e.g. the so-called hybrid flexures
[39]), whose use may be beneficial for optimizing the mechanism
selective compliant behavior [34].

• Although some very interesting theoretical works concerning PRB
approaches for spatial CMs have recently appeared [40,41], the
majority of applications presented the past literature takes into ac-
count CMs subjected to planar motions only, a possible reason being
the complexity of analytical methods when dealing with spatial
deformations;

• In terms of computer-aided design of mechanisms, there has
been a number of numerical solvers developed throughout the years
(see [42] for a review), comprising nonlinear FEM and MBD
packages. Nonetheless, practical methods, which take advantage of
the capabilities of integrated Computer-Aided-Engineering (CAE)

Fig. 1. Example of a parallel guide CM (a) and related 2R (b) and 3R (c) PRB representation.
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environments, when specifically applied for CM analysis/design,
have been scarcely described and should be further investigated.

As for the latter point, for what concerns specific CM design tools, a
first example is represented by SPACAR [43], an open-source code that
can simulate the motion of 3D flexible devices. More recently, a Matlab-
based, object-oriented software tool called DAS-2D [42] has been re-
leased for the same purpose. Possible drawbacks of the abovementioned
tools are the rather basic graphic interface and the use of 1D beam
elements for structural analysis. Therefore, by using either SPACAR or
DAS-2D, it is currently impossible to manage compliant members with
non-conventional shape, whose use could be beneficial in many appli-
cations. In addition, DAS-2D is limited to planar case studies, although
a 3D version (i.e. DAS-3D) is announced in development. At last, for
what concerns general-purpose commercial CAE tools, some MBD tools,
such as RecurDyn, can be used for the virtual prototyping of flexible
multibody systems in the large deflection range. Even so, in case the
shape of the compliant members needs to be optimized on the basis of a
user-defined cost function, the designer may rapidly face the intrinsic
limits of all the above mentioned packages. In practice, nowadays, a
CAD/CAE-based environment easily allowing for CM shape optimiza-
tion is non-existent. Therefore, similarly to [44], the only viable
strategy seems to be the integration of multiple platforms, namely a
parametric CAD for shape modelling, a CAE solver for model solution
and an external optimizer

Owing to these considerations, the purpose of this paper is to de-
scribe and test a novel CAD/CAE framework specifically conceived for
analyzing and designing spatial CMs by means of the PRB method. Such
framework allows for data exchange between a parametric CAD (PTC
CREO), the abovementioned CAE software RecurDyn, and a set of op-
timization routines written inMatlab. In particular, a clear advantage in
employing a parametric CAD/CAE is the possibility for the user to
capture design intents using features and constraints [45], thus allowing
to automate repetitive changes while maintaining a complete freedom
in the creation of complex 3D geometries suitable to a large variety of
design goals. Moreover, by this general approach, not only geometries
but also material properties can be parameterized: for instance, the
material Young's modulus may be function of some flexure geometrical
parameters, thus implementing the suggestions very recently high-
lighted in [46], which propose the use of an equivalent modulus, whose
value is dependent on the flexure out-of-place thickness, whenever
idealized elements or models are employed (such as “beam” elements or
planar stress / planar strain hypotheses). Building upon these promising
features, the effectiveness of the proposed tool will be tested on a
simple case study taken from the literature [1], namely a fixed-guided

flexible beam as the one depicted in Fig. 1a. Then, a more complex case
will be considered, in order to test the tool accuracy when dealing with
3D motions and deformable parts with complex geometry. The com-
pliant system under investigation consists of a spatial slider-crank me-
chanism connected to a compliant four-bar linkage subjected to out-of-
plane loads. The resulting PRB model, which closely replicates the in-
itial (sub-optimal) design, comprises four Spherical (S) joints with
three-dimensional rotational springs mounted in parallel. After the
numerical testing of several design alternatives and the selection of the
most promising solution, the final CM design (composed of two hybrid
flexures) is derived, confirming the practical usability of the proposed
multi-software framework. In all these cases, the material properties
will be assumed as constant.

The rest of the paper is organized as follows: Section 2 outlines a
series of possible CM designs steps, leveraging on the capabilities of-
fered by the mentioned software framework; Section 3 describes how a
fixed-guided flexible beam (see Fig. 1a) may be analyzed and designed by
means of theoretical methods and furtherly highlights the complexity of
the analytical approach in case of out-of-plane loads; Section 4 reports
the in-depth description of the overall CAD/CAE tool, which is actually
conceived to overcome the limitations of the theoretical approaches;
Sections 5 and 6 reports about the method validation and its im-
plementation on the described spatial CM; Section 7 provides the con-
cluding remarks.

2. Overview of the proposed CM analysis and design approach

A conceptual schematic of possible steps leading to the optimal
design of a spatial, distributed CM with complex-shape flexures is de-
picted in Fig. 2.

Such steps can be described as follows:

• #Step 1: starting from an initial, sub-optimal, design solution where
the CM topology is defined, an automatic routine provides a PRB
representation of the system. In the following, this step will be re-
ferred to as PRB Derivation Process;

• #Step 2: on the basis of a PRB model, several design alternatives can
be tested by simulation, the only limit being that the initial me-
chanism topology shall be maintained. Naturally, the PRB re-
presentation allows to simulate each design variant in a very quick
and efficient way (i.e., the computational time is reduced of two
order of magnitude as compared to simulations based on FEM [47]);

• #Step 3: once the most promising solution (still based on a PRB
representation) is found, the final shape of the flexible members is
determined by leveraging on the abovementioned CAD/CAE

Fig. 2. CM Design method leveraging on the PRB technique.
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integration routines. Note that the final CM design fully replicates
the behavior of its PRB counterpart. In addition, also flexures with
complex shape (i.e. hybrid flexures) can be designed. In the fol-
lowing, this last step will be referred to as CM Shape Optimization.

At last, when a suitable CM design has been produced, the initial
assumption about the PRB topology are verified against numerical data
coming from MBD/FEM simulations. If the obtained accuracy is en-
visaged as sufficient for the considered application, the obtained hybrid
flexure geometries represents the final solution. In any other case, a
design iteration will be necessary, based on an increment of the number
of degrees of freedom as compared to the initial PRB model.

3. Analysis and design of fixed-guided beams via analytical
methods

This section recalls the modelling of the fixed-guided flexible segment
(see Fig. 1a), thus providing both the necessary analytical background
to derive a PRB model and the means to compute the dimensions of a
flexure with simple shape on the basis of the desired stiffness char-
acteristics. The schematic layout and the boundary conditions of such
slender beam flexure are depicted in Fig. 3a, the related 2R PRB model
is shown in Fig. 3b, the free-body diagram of one half of the beam and
its 1R PRB model are reported in Figs. 3c and 3d. In particular, one end
of the flexure is clamped to the ground, whereas the other end is guided
to maintain absence of rotation. In order to obtain this configuration, a
resultant clockwise moment M must be applied at the beam end points,
in addition to the vertical force F. Summing moments at either end of
the free-body diagram in Fig. 3c yields to the following relations:

Fa M Fa M Fa
2 2c

c c− = → = (1)

where ac is the horizontal distance between beam free and fixed ends
(see Fig. 3a). The resulting deflected shape is antisymmetric at its
centerline (as shown in Fig. 3a), the angular deflection of the beam, ϑ,
reaching its maximum for ϑ ϑy a /2 0c == where the curvature is zero.
Being directly related to the beam curvature, the moment at y a /2c= is
null.

Consequently, in order to evaluate the beam tip deflection when
subjected to force F and moment M, due to symmetry, a single half-
beam subjected to the only vertical force F can be considered.
Subsequently, the results obtained by means of the large deflection
beam theory (elliptic integral approach [1]) must be multiplied by a
factor of two, as follows:
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where l is the beam length, ac/ l and bc/ l are, respectively, the nor-
malized horizontal and vertical displacement of the tip, and αt is the
non-dimensional transverse load index [1], defined as:

α Fl
EJt

zz

2
=

(5)

where E is the Young modulus of the beam material and Jzz is the
moment of inertia of the beam cross section along an axis (z-direction)
perpendicular to the motion plane. In this particular situation, a 2R-PRB

Fig. 3. (a) fixed-guided flexible beam (undeflected+deflected configurations); (b) related 2R PRB; (c) half-beam schematic subjected to end force; (d) half-beam
PRB model; (e) Beam cross section.
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model, consisting of three rigid links connected by two symmetrically-
disposed revolute pairs, is shown in Fig. 3b. Furthermore, two torsional
springs with same stiffness are located over the revolute joints in order
to approximate the beam compliance. Therefore, such 2R-PRB model
requires two characteristic parameters to describe the kinematic and
the force-deflection behavior of the related CM. By employing the same
notations suggested in [1], the PRB parameters are indeed the char-
acteristic radius factor (γ) and the stiffness coefficient (KΘ). Within the
PRB approximation, the length of the links (i.e. l l1 3= and l2, see
Fig. 3b) and, consequently, the horizontal, ap, and vertical, bp, positions
of the PRB model's end point can be defined as function of γ. The fol-
lowing relations hold:

l l
γ l

l γl
(1 )

2
; ;1 3 2= =

−
= (6)

a l γ b γl(1 (1 cos(Θ))); sin(Θ);p p= − − = (7)

In parallel, the stiffness of the torsional springs can be expressed
considering the half-beam and the related PRB model (see Fig. 3d). The
PRB angle Θ is proportional (with K constant) to the torque at the re-
volute joint, given by T Ft

γl
2= .

Combining the equations, the force can be expressed as follows:

F K
γl

2 Θ
t =

(8)

where Ft is the transverse component of the vertical force F. Moreover,
considering also the parameter αt, the force-deflection relationships
may be written as:

α F l
EJ

K Θt
t

zz

2
2

Θ= =
(9)

where KΘ is, as previously introduced, the stiffness coefficient. Then, by
means of Eqs. (8) and (9), the constant spring stiffness of each revolute
joint of the half-PRB model can be formulated as:

K γK
EJ

l2
zz

Θ= (10)

Eq. (10) has to be adapted in order to comply with the complete PRB
model, that involves two revolute pairs and a total length equal to l. In
this case, Eq. (9) becomes α K2 Θt

2
Θ= , the final stiffness value being

given by:

K γK
EJ

l
τ

EJ
l

2 zz zz
Θ= = (11)

where τ γK2 Θ= . The numerical values of γ and KΘ and, as a con-
sequence, of τ can be assessed via optimization techniques aiming at
providing PRB models which can optimally replicate the trajectory of
the beam free end during deformation, expressed by Eqs. (2)–(4). In
particular, the numerical problem is divided in two different steps. The
first step allows to determinate the value of γ, so that the PRB linkage
end-point's trajectory replicates (with an acceptable error) the CM's
deflection path, at least up to a user-defined maximum angle, Θmax,
having defined the so-called PRB angle, Θ, as follows:

atan
b

a l γ
Θ

(1 )
p

p
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⎝ − −

⎞
⎠ (12)

Recalling from [1], the optimization problem may be formalized as
finding the value of γ which maximizes the PRB angle Θ (from
Eq. (12)), which is subject to the parametric constraint
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where etra(Θ) is the relative deflection error and ac, bc, ap, bp are re-
spectively defined in Eqs. (3),(4) and (7). Once the value of γ has been
obtained, the second step considers the rotational springs placed in
parallel to the R joints, with the aim of finding the optimal KΘ value, so
that the PRB model mimics the CM force-displacements behavior within
the range 0<Θ<Θmax. Recalling the design process depicted in Fig. 2,
the abovementioned procedure basically covers the first design step
(i.e. the PRB derivation process).

On the other hand, for what concerns the actual determination of
the flexure geometric parameters starting from a PRB model (i.e. the
third step in Fig. 2) some additional assumptions are needed, namely
cross section type and flexure material properties. Let one then consider
a slender beam with rectangular cross section as depicted in Fig. 3e. The
moment of inertia of the beam cross section is:

J BH
12zz

3
= (14)

As previously said, it is also necessary to consider the maximum
stress associated to the load condition. Considering bending as the
predominant loading mode, the associated stress is given by:

σ M
W

M
BH

6
max

max max
2= = (15)

where W is the cross section's modulus, whereas B and H are, respec-
tively, the cross section's width and thickness. Since the maximum
bending moment |Mmax| is placed, for this configuration, at each beam
end, Eq. (15) evolves in:

σ Fa
BH
3

max
c
2= (16)

In order to avoid failures, the maximum stress σmax shall be always
lower than the material yield strength, σs. In conclusion, the cross
section width, B, and thickness, H, can be determined by solving a
system of equations, in which the reference PRB model is completely
defined, so that the Θ angle is known. The first system includes Eqs.
(11) and (14):
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The final system also considers Eq. (16), having selected a maximum
stress σmax and having imposed a ap c= (namely, the compliant system
to be designed replicates the reference PRB model). The cross section
dimensions are finally determined as follows:
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⎩
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(18)

Note that the abovementioned theoretical procedure is quite
straightforward, although based on simplifying assumptions (e.g.
bending stress only) and only applicable to the design of slender beam-
like segments with uniform cross section subjected to planar deforma-
tions only.

For what concerns flexures subjected to out-of-plane deformations
(i.e. spatial motions), the derivation of a suitable PRB model, along with
the flexure sizing starting from a PRB model (i.e. respectively the first
and third steps in Fig. 2), the abovementioned theoretical procedure is
rather complex [41], so that a numerical approach seems preferable.
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Let one then consider, once again, a slender flexible beam subjected to
out-of-plane loads (as shown in Fig. 4a). In this particular situation, a
2S-PRB model, consisting of three links connected by two spring-loaded
S pairs, is shown in Fig. 4b.

Considering the rectangular cross section depicted in Fig. 3e, along
with a reference frame in which the principal beam axis is directed in
the y-direction, the x-axis and the z-axis respectively defining the di-
rection of the higher (primary) and smaller (secondary) beam cross-
section moments of inertia (also shown Fig. 3e), the values for the PRB
rotational stiffness can be formulated as follows [40,48]:
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(19)

where Kϑx, Kϑy and Kϑz are, respectively, the stiffness related to the
rotations around the x, y, and z axis, Jxx is the moment of inertia of the
beam cross section along x axis, G is the shear modulus of the material
and μ, ɛ and τ are specific constants. In practice, in case of planar CMs,
the PRB model derivation process requires the determination of the R
joints location and a single stiffness coefficient, K Kzϑ = , for each ro-
tational pair (or, in turn, the values of γ and τ, see Eqs. (6) and (11)). On
the other hand, when dealing with spatial CMs and spring-loaded S
joints, two additional rotational stiffness, namely Kϑx and Kϑy shall be
determined (or, in turn, the values of μ and ɛ, see Eq. 19). In such case,
the numerical optimization procedure presented hereafter can provide
reliable results in an efficient manner.

4. Description of the CAE-based procedure

As previously recalled, for a given CM topology, the determination
of the PRB parameters can be achieved by means of a variety of tech-
niques (see, e.g., [26,31]). On the other hand, for what concerns the
determination of a hybrid flexure geometry mimicking a reference PRB
model, no general analytic solution is available. In this case, the pro-
blem can be tackled resorting to a software tool enabling an effective
search of a CM optimal design starting from a parametric CAD/CAE
model. Essentially, such tool aims at solving a design optimization
problem, having defined an objective function (alternatively called
performance index), lower and upper bounds for a set of parameters
representing design variables in the CAE environment, and a set of
constraints. As regards the CM design by means of the PRB method,
once the PRB topology is defined, external loads (or displacements) are
applied to both a CM model (comprising deformable links) and a PRB

system (comprising only rigid links and lumped springs). On one hand,
the CM can be analyzed by means of nonlinear FEM or, if possible, via
theoretical methods (such as the Euler-Bernoulli beam theory). On the
other hand, the PRB system can be analyzed resorting to the free-body
diagram approach, to the principle of virtual works [1], or by means of
MBD tools. The definition of the objective function is then obtained by a
norm of the distance of the trajectories of one reference frame of in-
terest measured on both flexible CM model and PRB-based mechanism.
The optimization problem, whose objective function will be hereafter
referred to as trajectory error, etra, can be formulated as follows:
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where n is the number of design parameters (denoted as p), xj
C, xj

P, θk
C,

θk
P are, respectively, translations and rotations (defined, for instance,

via the Euler angles convention) of the chosen reference frame fixed to
both one link of the CM (superscript C) and of the PRB (superscript P),
and l is the flexure length (as in Fig. 3a). The performance index etra is
then evaluated through a series of Q simulation steps. Eq. (21) for-
malizes the optimization constraints in terms of lower and upper
bounds of the design parameters (inequality constraints) and/or (non-
linear) constraint relations between the design parameters p p, , n1 … and
user-defined constants, p p,n n m1,…+ + . The performance index represents
the root mean square value of the trajectory error computed in Q
equilibrium mechanism configurations, from the undeformed config-
uration to the maximum imposed deflection.

An efficient method to determine the relation between the design
parameters and the objective function, widely employed in modern
design optimization approaches, is based on the use of meta-models
[49,50], namely suitable approximations of the real objective function,
whose construction is based on two essential steps: Design Of Experi-
ments (DOE), where the design space is sampled in a discrete number of
points, and Response Surface Modeling (RSM), which refers to all those
techniques employed to create an interpolating or approximating n-
dimensional hypersurface in the n( 1)+ -dimensional space given by the
n design variables plus the objective function. The benefit of this ap-
proach is that, once the meta-model has been obtained, very quick
optimization techniques can be used to determine the stationary points
on the response surface. In practice, meta-modeling techniques become

Fig. 4. (a) Cantilever flexible beam subjected to out-of-plane loads; (b) related 2S PRB.
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useful when it is impossible or too complex to define analytically the
correlation between the objective function and the design parameters.
Considering the objective function, etra, and the parameters defined in
Eqs. (20) and (21), the selected DOE+RSM procedure provides an
approximation, etrâ , of the actual function, etra, which may be for-
mulated as follows:

X p p[ , , ]n1= … (22)

Y X X X Y Xe e e( ) ( ) ɛ( ) ( )tra tra trâ ̂= = + → = (23)

where Y is the is the estimated approximate response function and ɛ(X)
is the error related to the meta-modelling step. Further insight of this
numerical procedure can be found in [51].

4.1. Automatic derivation of PRB model parameters via CAE tools

Concerning the PRB derivation procedure (#Step 1 in Fig. 2) and
assuming that a set of ns spring-loaded spherical pairs are employed in
the PRB representation of a generic spatial CM, the minimization pro-
blem previously introduced in Eqs. (20) and (21) is used in order to
determine both springs’ location and generalized rotational stiffness.
Therefore, recalling that such PRB system can be fully described by
n 1− parameters γ (defining the kinematic pair location via Eq. (6)),
along with a set of three parameters μ, ɛ, τ for each spring (defining
generalized stiffness via Eq. (19)), the DOE+RSM procedure aims at
providing the function e γ γ μ μ τ τ( , , , , , , ɛ , , ɛ , , , )tra n n n n1 1. 1 1 1̂ ⋯ ⋯ ⋯ ⋯− , to be
subsequently minimized. Such optimization procedure has been pre-
viously managed by the authors in [52], where the RecurDyn’s internal
optimization toolkit (named “Autodesign” ) has been employed and its
intrinsic limitations (in terms of meta-modelling capabilities) have been
discussed. Extending the abovementioned previous work, in the fol-
lowing, a framework has been developed in which Matlab manages the
optimization process, along with all the simulations and the data ex-
change activities. With reference to Fig. 5, for what concerns the PRB

derivation of a generic spatial CM with given topology, the procedure
involves:

• Matlab, the well-known numerical environment, as MAIN (i.e.
governing iteration execution, collecting post-processing data, pro-
viding the DOE+RSM phase);

• RecurDyn, a Multi-Flexible Body Dynamics (MFBD) software, as
CALCULATOR, to execute PRB simulation and then to compute the
objective function at each iteration.

The optimization process is overseen by Matlab and leverages on
RecurDyn’s interfacing capabilities, which allows the use of batch si-
mulation execution: RecurDyn’s solver can be run in batch mode
through a set of command files, consequently, set up by Matlab. The
following file types are employed:

• Scenario File (.rss file), that contains information about the simu-
lation that has to be performed, such as Simulation Type and
Number of Simulation Steps;

• RecurDyn Design Parameter Files (.rdp and .rpv files), which
contains all the parametric data to be set in the model. In particular,
the numerical value of each parameter are stored into such files, that
can be created and modified via a Matlab function.

In this application, as said, the trajectory error defined in Eq. (20)
shall be evaluated. Once external loads and/or displacements are de-
fined, the CM behavior is simulated within the MBD tool in order to
compute a set of values for xm

C and θn
C. These values are then fed into the

PRB model (built within the RecurDyn environment), which is used for
objective function evaluation. It is important to remark that CM
boundary conditions are applied also to the PRB model. For each PRB
model solution, representing the K-th iteration of the optimization
process, the trajectory error is computed on the basis of the values for
xm

C, θn
C, xm

P, θn
p. The results obtained for each PRB model simulation

Fig. 5. Schematic of #Step 1 (PRB derivation) optimization loop.
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(trajectory error versus system configuration) are then exported and
stored. In order to manage and solve the optimization problem, the
following operations are performed through a sequence of Matlab
functions:

• Creation of the Design Space, based on upper and lower bounds
specified for each parameter;

• Definition of the Sampling Points over the design space, on the
basis of the settings (in terms of sampling criteria and number of
samples), defined in the previous step;

• For K=1 to Number of Sampling Points
- Update the RecurDyn Design Parameter file with the K-th set of
values;

- Batch RecurDyn Execution;
- Extraction of the K-th results set and evaluation of the objective
function e p p( , , )tra n1 … ;
end

• Data fitting, in order to obtain the Response Surface and complete
the Meta-Modelling phase;

• Search of the minimum via a minimization algorithm.

In this paper, the Full-Factorial criterion and the Radial-Basis-
Function (Multi-Quadratic) technique are respectively adopted for the
DOE+RSM phase [53]. Subsequently, a deterministic algorithm
within Matlab is used for finding the minimum of the Response Surface.
Since the definition of an initial value (from which the algorithm starts
the optimum search) is usually required, in order to avoid local minima,
several initial values are tested. Those values are selected among the
discrete minima found during the DOE step, as suggested in [51]. A
conceptual schematic of the complete optimization process is shown in
Fig. 5.

4.2. CAD/CAE-based shape optimization of compliant members

As depicted in Fig. 2, after an optimal PRB-based design has been
determined, the last design step (i.e. CM Shape Optimization) is used to
determine the shape of generic hybrid flexure geometries that can provide
the required stiffness. This numerical approach allows to overcome the
limitation of several theoretical models, such as the one recalled in
Eq. (18) concerning beams with rectangular cross-section only.

Consequently, the minimization problem, previously introduced with Eqs.
(20) and (21), is again formulated considering as design variables the
dimension parameters of the compliant members, so that the design
parameters, p p, , n1 … , now represent a user-defined set of flexure geo-
metric dimensions set-up within a parametric CAD. Again, the
DOE+RSM procedure aims at providing the function e p p( , , )tra n1̂ … , to be
subsequently minimized. Differently from the PRB derivation process, in
which parametrization and calculations can be performed by leveraging
only on Matlab functions managing the MBD environment, in case of CM
shape optimization two additional tools are needed. This is due to the
necessity to vary the flexure parametric dimensions at each iteration, to
regenerate the actual 3D shapes of the flexible links and, consequently, to
re-mesh them, to re-set their boundary conditions (connections with other
bodies of the system) and to specify material properties. Automatic ex-
ecution of re-meshing and boundary condition definition are not natively
provided by RecurDyn, but it is possible to implement them by leveraging
on ProcessNet, a macro development toolkit integrated within RecurDyn
and based on C# programming language. A ProcessNet script, executing re-
meshing, boundary conditions re-settings and material properties defini-
tion, can be automatically run when RecurDyn is launched in batch
modality. Therefore, the Matlab-guided framework described in the pre-
vious section can be adapted to provide shape optimization capabilities. In
this case, the procedure involves:

• Matlab as MAIN;

• RecurDyn as CALCULATOR;

• PTC Creo as Parametric CAD to regenerate 3D shapes;

Similarly, to the schematic reported in Fig. 5, the shape optimiza-
tion process starts from Matlab. As mentioned, the need to change the
flexure geometry at every iteration involves the use of a parametric
CAD that can be controlled by using a text file, in which geometrical
features and dimension parameters are defined. Such text file is mod-
ified by Matlab and overwritten for every K-th sampling of the design
space. In particular, new geometries are generated, exported and then,
a specific ProcessNet script updates the RecurDyn model with the K-th
CAD file. The structure of the ProcessNet script considered in this paper
is represented in Fig. 6, which provides an overview of the main sec-
tions of the code. For a detailed explanation of each command/action,
the interested reader may refer to the ProcessNet manual.

Fig. 6. ProcessNet script for optimization problem.
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The complete optimization process, depicted in Fig. 7, has to be

managed through a sequence of Matlab functions:

• Creation of the Design Space & Definition of the Sampling
Points (similarly to Section 4.1);

• For K=1 to Number of Sampling Points
- Update of the text file connected with PTC Creo in order to
modify the geometry of the compliant members;

- BatchPTC CreoExecution to create the K-th Geometry of the
compliant members;

- BatchRecurDynExecution of the K-th CM configuration. The
model is managed by a ProcessNet Script (launched automatically

from RecurDyn), that imports the K-th flexible model and enforces
Joints, Mesh and Material Properties definition. Subsequently, the
K-th simulation starts upon the execution of a ProcessNet com-
mand.

- Extraction of the K-th results set and objective function evaluation
(similarly to Section 4.1);
end

• Data fitting & Search of the minimum (similarly to Section 4.1).

5. Validation of the method on a theoretical case

To validate the proposed optimization procedure, a simple theore-

Fig. 7. Schematic of #Step 3 (CM shape optimization) loop.

Fig. 8. Fixed-guided beam: MBD and nonlinear FEM. (a) Undeflected configuration; (b) Deflected configuration.
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tical case study (shown in Fig. 8) with consolidated results is solved,
namely a cantilever beam with rectangular section, as the one depicted
in Fig. 3e. The beam length is l 200mm= , cross section's width and
thickness are, respectively, B 15mm= and H 3mm= , Young's modulus,
Poisson's ratio and yield strength of the employed material are, re-
spectively, E 0.4GPa= , ν 0.41= , and σ 30MPas = .

The initial RecurDyn FEM model is obtained by a mapped mesh of
brick elements (1 mm as max element size). After a mesh convergence
analysis, the employed mesh consists of 9001 elements and 12865
nodes. For what concerns the loads acting on both flexible CM model
and related PRB model, with reference to Fig. 8, a vertical upward
force, F 4.5N= , and a clockwise moment, M 336Nmm= − , are applied
to the beam free end with a linearly growing law in a series of Q 200=
simulation steps, ensuring a maximum final deformation characterized
by Θ 46. 6max = ∘, along with vertical and horizontal deflections re-
spectively equaling a l/ 0.75c = and b l/ 0.59c = , and a maximum stress
σ 14.8MPamax = . Once the results from the nonlinear FEM are available,
several parametric PRB models are tested, by leveraging on the fra-
mework described in Fig. 5. In particular, referring to this specific case
study, the values for characteristic radius factor and stiffness coefficient
suggested in the literature are, respectively, K 2.68Θ = and γ 0.8517=
[1]. The corresponding PRB links length and torsional stiffness can be
obtained by means of Eqs. (6) and (11) as l l(1 γ) /2 19.07mm1 = − =
and K γK EJ l2 / 306.54Nmm/radΘ= = . These PRB parameters are com-
puted considering the Euler-Bernoulli beam theory, whose limits are
discussed in [5]. In parallel, the results achieved by means of the pro-
posed software framework are summarized in Table 1. The same table
also provides the values of the objective function etrâ from Eq. 23,
highlighting that the approach proposed in this paper can provide
better results than the analytical one.

Concerning the determination of the flexure geometry mimicking
the PRB model (i.e. #Step 3 in Fig. 2), the theoretical method described
in Eq. (18) is compared with the results obtained employing the fra-
mework depicted in Fig. 7. The input of the problem are the PRB
parameters, namely γ 0.8517= , τ 4.57= , a l/ 0.75p = and
K 306.54 Nmm/rad= , whereas the limit stress value is set to
σ 14.8 MPamax = (as computed in the initial FEM simulation). The re-

sults achieved by means of either the theoretical model or the software
tool are summarized in Table 2, along with the corresponding trajectory
errors.

Overall, the numerical results provided in Tables 1 and 2 confirm
that the described procedure can be effectively employed for deriving
reliable PRB parameters (i.e. #Step 1 in Fig. 2) and for dimensioning the
beam cross section (i.e. #Step 3 in Fig. 2). Obviously, in this validation
case, the results obtained during the shape optimization process, simply
provide the values initially set for the flexure cross-section.

6. Validation of the method on a spatial compliant mechanism

6.1. #Step 1: PRB derivation process

In this section, a case study consisting of a spatial CM with flexures
of complex geometry is analyzed. Let one first consider a particular
linkage system, namely a spatial slider-crank mechanism (see Fig. 9),
which transforms a rotational motion of an input crank into a purely
translational motion of a slider (hereafter also referred to as platform).
Such mechanism is composed of a revolute, two spherical and a pris-
matic pairs.

In order to reduce friction, the prismatic pair may be substituted by
parallel leaf-spring flexures (i.e. a fully compliant four-bar linkage),
which can provide approximate straight line guiding [27].

The initial CAD model of such partially compliant mechanism, along
with its PRB counterpart, are depicted in Fig. 10. The flexible CM model
is composed of three moving rigid bodies (crank, rod and platform), two
rigid bodies fixed to the ground (motor and frame), and two flexible
members (similarly to Fig. 1a) with constant cross section. With re-
ference to Fig. 11, these flexures are initially designed as slender beams
with length l 400 mm= , width B 15 mm,= and thickness H 5 mm= .
The horizontal distance (in the x-direction) of the beams is set to
d 59 mm= (also shown in Fig. 11). The length of crank and connecting
rod are, respectively, 70mm and 345mm. It is evident that, due to the
mechanism topology and the absence of a prismatic joint guiding the
platform (as in Fig. 9), an out-of-plane motion of the platform itself may
occur during functioning. This crucial aspect is highlighted in Fig. 10d,
where the actual platform trajectory is shown, as compared to an ideal
straight path achievable with the rigid-link mechanism shown in Fig. 9.
For what concerns the CM of Figs. 10a and b, the compliant beams are
made of Spring Steel with Young's Modulus, E 207 GPa= , and Pois-
son's ratio, ν 0.30= .

Table 1
PRB derivation process: optimization results.

Pseudo-rigid-body parameters Analytical Numerical

γ 0.8517 0.8093
τ γK2 Θ= 4.57 4.55
Trajectory error e( )trâ 0.042 0.009

Table 2
CM shape optimization results.

Compliant member cross section Analytical Numerical

B 15.78mm 15.05mm
H 2.94mm 2.98mm
Trajectory error e( )trâ 0.015 0.010

Fig. 9. Spatial Crank Mechanism.
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After a mesh convergence analysis, the employed mesh of this initial
CM design consists of 4802 brick elements and 7238 nodes for each
member. In order to allow the spatial motion of the platform, the PRB
system (depicted in Fig. 10c) is formed by four equally-spaced S joints,
each having a generalized rotational spring mounted in parallel. These
four springs are characterized by the same rotational stiffness constants.
Subsequently, with the purpose of measuring the trajectory error, etra,
between CM and PRB systems, a reference frame is placed on a point of
interest located on the platform (Figs. 11 and 12), while, in order to
have a quasi-static behavior, a rotation at low constant velocity is en-
forced along the rotation axis of the crank (0.25 rev/s). Owing to these
assumptions, the PRB derivation process (#Step 1 in Fig. 2) requires the
determination of four design parameters, namely γ, μ, ɛ and τ, where γ is
necessary for determining the length of each segment (see Fig. 12) and
μ, ɛ and τ are directly related to the stiffness coefficients Kϑx,Kϑy, Kϑz of
the spherical spring-loaded joints via Eq. (19), as previously discussed.

Numerical results concerning the PRB parameters determined by
means of the framework described in Fig. 5 are summarized in Table 3,
whereas Fig. 13a–c respectively report the behavior of CM and optimal
PRB model in terms of spatial translations of the platform (along x, y,
and z directions, shown in Fig. 10a). For all motion variables of the
measured reference frame, the PRB model captures the CM behavior
with excellent accuracy. In addition, Fig. 13d reports the rotation along
the x-axis, highlighting the limits of the employed PRB topology, which
is however considered sufficiently accurate for the proposed applica-
tion. Rotations graphs along y and x-axis are extremely small (i.e.
0.01 rad of maximum values), thus they are not included for brevity.

6.2. #Step 2: evaluation of design alternatives

Considering the second phase of the conceptual design process
shown in Fig. 2, by leveraging on the previously derived PRB model,
#Step 2 allows to quickly evaluate several design alternatives. In

Fig. 10. Spatial Crank Mechanism connected to a fully compliant four-bar linkage.

Fig. 11. Compliant four-bar linkage.

Fig. 12. Spatial four-bar linkage: PRB model.

Table 3
Optimization results for #Step 1.

PRB Parameters γ μ ɛ τ

0.86 0.47 0.12 2.40
Trajectory error e( )trâ 0.0007
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particular, three measures of the mechanism performance, measured on
its PRB implementation, will be evaluated hereafter, namely:

• Trajectory tracking of an ideal path;

• Required actuation torque measured on the motor shaft;

• Maximum bending stress arising in the flexures.

Regarding the first measure, since parallel leaf-spring flexures are
employed to replace a prismatic joint acting on the platform (along x-
direction), the kinematic performance of the PRB model may be eval-
uated by computing the actual platform trajectory and comparing it to a
pure platform translation (ideal motion) that would be obtained by the
rigid slider-crank mechanism. So the tracking error elin, between the
platform's trajectory and the ideal profile (i.e. a straight line along the
x-axis) can be defined as follows:

e K l B H K l B H K l B H d e l d B H
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where x P
1 and x P

2 are, in this case, the displacements of the platform
along y-direction and z-direction. As highlighted in Eq. (24), the

trajectory tracking error is function of the flexure distance, d (see
Fig. 11), along with the parameters Kϑx, Kϑy, Kϑz. These latter stiffness
values are, in turn, function of the flexure geometry via the parameters l
and B (see Eq. (19)), which respectively represents flexure length and
cross section's width. As for the actuation torque, it can be directly
measured within the MBD environment, whereas the maximum
bending stress (which is mainly function of the beam thickness, H [48]),
is computed via Eq. (16). In particular, several DOE+RSM investiga-
tions have been performed considering l∈ [300, 350, 400, 450, 500]
mm, d∈ [39, 49, 59, 69, 79]mm, B∈ [10, 12, 15, 18, 25]mm, and
H∈ [3, 4, 5, 6, 7]mm. The obtained results are reported in Fig. 14, that
allows to easily evaluate a design solution that is suited to the func-
tional requirements of the system in terms of the abovementioned
quantities, i.e., trajectory tracking, maximum and RMS actuation tor-
ques, maximum stress. After the abovementioned investigation, the
selected PRB model is characterized by a length l 500 mm= , a width
B 18 mm= , a thickness H 4 mm= , and an unchanged distance
d 59 mm= . Note that, as visible in Figs. 14a and b, the trajectory
tracking performance reasonably increases as the flexures’ length, l, and
width, B, increase. However, in order to limit the maximum and RMS
actuation torques, the beam width should not exceed a certain
threshold (as visible in Figs. 14c and d). Regarding the maximum stress,
the adopted flexure material (spring steel) provides a yield strength

Fig. 13. Comparison between flexible CM model and related PRB model: displacement plots.

P. Bilancia et al. Robotics and Computer Integrated Manufacturing 56 (2019) 287–302

298



 

σ 1100 MPas = . Therefore, by adopting a flexure thickness H 4 mm= ,
the designer is enforcing a safety coefficient slightly higher than 2.

6.3. #Step 3: CM shape optimization

In order to obtain the final CM design, based on the PRB model
evaluated in the previous section, the shape optimization scheme is
employed and a hybrid flexure with non-standard shape is considered
so as to demonstrate the generality of the proposed approach. In par-
ticular, hybrid flexures have been adopted in previous works [39] with

the purpose of reducing the flexure stiffness in the direction of actua-
tion, although the same design target could be achieved by simply
decreasing the thickness of a simple beam or by employing materials
with lower Young Modulus. In any case, it shall be remarked that the
main purpose of the paper is to show that custom geometries with
defined in-plane and out-of-plane stiffness characteristics and opti-
mized according to complex design goals can be readily obtained via
the proposed CAD/CAE framework. Specifically, let one consider nu-
merical values obtained in #Sept 2 for the flexure distance, d (see
Fig. 11) and for the PRB stiffness Kϑx, Kϑy, Kϑx, which in turn define l, B

Fig. 14. DOE+RSM investigation for the evaluation of design alternatives.
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and H via Eq. (19) and a CM mechanism including hybrid flexure
geometries, that comprise a number of eyelets, as shown in Fig. 15.

Let one then assume that:

• Two identical hybrid flexures shall be employed in place of the
compliant parts shown in Fig. 11;

• With reference to Fig. 15 and Eq. (20), the chosen design parameters
(among the many possible ones) defining the flexure geometric
features are p Hα1 = , p Bα2 = , p lα3 =

• With reference to Eq. (21), the following constraints are enforced:
◦ 3.5 mm≤ p1≤ 6mm
◦ 18.0 mm≤ p2≤ 24.0 mm
◦ 100.0 mm≤ p3≤ 250.0mm
◦ p l 500mmβ4 = =
◦ p l 45mmγ5 = =
◦ p B mm7β6 = =
◦ p B B B2γ α β7 = = −

As discussed before, in order to generate updated parametric geo-
metries during design space exploration, the geometric model of the
compliant members is parametrized in the PTC Creo environment. Since
the CM is characterized by out-of-plane motions, the parameters chosen
for the flexure geometry are directly related to its cross section's mo-
ments of inertia. The results of the shape optimization process are
shown in Fig. 16a, where the function e p p p( , , )tra 1 2 3̂ and its minimum
value are shown over the explored design space (by fixing p 200 mm3 =
for visualization purposes).

The optimal solution, that is p H 4 mm,α1 = = p B 19 mmα2 = = ,
p l 200 mmα3 = = represents the final flexure geometry. In order to
confirm the accuracy of the procedure, similarly to the #Step 1, a
comparison between the optimized PRB model and the final CM is
presented in Figs. 16b, c and d, which provide the position profiles of
the two systems (PRB model and hybrid flexure CM) in the x, y, and z
directions. Also, the path followed by the platform in the 3D space is
provided in Fig. 17. As desired, the final CM design closely follows the
behavior established by the PRB model, also confirming that the choice
of the PRB topology is acceptable for the considered application. After
the shape optimization routine, a final simulation test has been per-
formed, in order to verify that the maximum Von Mises stress and the
actuation torque at the motor shaft, that are, respectively, 580 MPa,
590 Nmm (maximum torque) and 397 Nmm (RMS torque). These va-
lues are compatible with the design constraints. For what concerns
computational times, all the simulations have been performed on a
Workstation with an Intel(R) Xeon(R) CPU E3-1270 v5 @ 3.6 GHz and

Fig. 15. Hybrid flexure of final CM design.

Fig. 16. #Step 3 results: comparison between PRB model and CM behaviors and optimal solution.
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32 GB RAM. Every CM model is solved in RecurDyn in 200 s, whereas
the PRB models are simulated in 0.37 s, further highlighting the use-
fulness of the PRB approximation whenever computational efficiency is
sought after. Considering the framework defined for the #Step 1 and
#Step 2 of the design process, a single iteration is computed in 3 s, due
to the fact that RecurDyn’s is re-launched at each iteration. For what
concern the #Step 3, every iteration is computed in about 220 s. In this
case, the framework also embeds PTC Creo and a ProcessNet macro, thus
increasing the total iteration time.

7. Conclusion

In this paper, a general engineering approach for designing spatial
compliant mechanisms with hybrid flexures has been presented. The
method leverages on the integration of a set of state-of-the-art CAE
tools, namely Matlab (for meta-model based optimization), RecurDyn
(for MBD/FEM simulation), and PTC Creo (for geometric modelling of
complex shapes). This set of modelling tools allows for the determina-
tion of PRB models that replicate a given compliant mechanism to-
pology, on one hand, and for the design of flexible members with
complex geometry, on the other. After an initial validation of the pro-
posed framework, carried out on a simple planar case study known
from literature, the overall procedure has been tested on a spatial
compliant mechanism with hybrid flexures. Numerical results confirm
the suitability of the method for designing systems comprising a set of
rigid and flexible bodies with non-standard customized geometry. Since
the proposed approach is largely based on the use of general purpose
CAD/CAE software, it shows good potentials for the quick and efficient
design of optimized compliant systems in a large variety of applications.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.rcim.2018.07.015.
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