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a b s t r a c t

In this paper, an engineering method for the power flow assessment of a position-controlled servo-
mechanism is outlined. The considered system is composed of a permanent magnet synchronous motor
coupled to a standard power converter, and directly connected to a slider crank mechanism. After the
accurate description of a consistent power flow model, a sequential identification technique is discussed,
which allows to determine the dynamic parameters of linkage, electric motor and electronic driver by
means of non-invasive experimental measures. The proposed model allows to accurately predict the
major sources of power loss within the system.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

During the last few decades, a growing sensitivity on energy
consumption and the related environmental issues has increased,
leading to the conception of several Green Manufacturing tech-
niques [1]. In particular, a special attention has been recently de-
voted to the development of novel methods and tools for the en-
ergy-optimal design of position-controlled servo-actuated me-
chanisms [2,3]. These energy saving methods usually rely on
predictive models of the system power flow, whose accurate as-
sessment requires a precise description of linkage, electric motor
and electronic driver dynamics.

On the other hand, even though several servo-mechanism
models may be easily found in the literature [4], the numerical
parameters describing the system behavior are usually either un-
known, rather inaccurate or covered by confidentiality agree-
ments. For instance, the torque constant of the electric motors,
together with the motor nominal efficiency, can be found in the
iments; DM, dynamic model;
or; NRMSE, Normalized Root
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),
component data-sheets. However, these data are often very
roughly defined and useful only for approximate predictions. Si-
milarly, the linkage parameters (such as nominal dimensions,
masses and moments of inertia) can be determined by means of a
generic CAD software only if a virtual prototype of the mechanical
hardware is available and no third party equipment is employed.
Therefore, proper identification techniques may become the only
way to build reliable power models and to quickly evaluate a set of
consistent model parameters.

Concerning these identification techniques, several approaches
have been presented in the past literature, which are well ad-
dressed in multiple books [5] and surveys [6]. In general, a stan-
dard identification procedure consists of modeling, Design Of Ex-
periments (DOE), data acquisition and subsequent signal processing,
parameter estimation, model validation.

As for the modeling part, the generation of a system model is
the first step of any identification technique. On one hand, the
inclusion of all the physical phenomena that determine the dy-
namic behavior of the system allows to reduce potential sys-
tematic errors (i.e. bias errors [7]). On the other hand, complex
models necessarily imply an increased number of parameters that
need to be identified and, consequently, increased uncertainty of
the identification results. Therefore, for a given application and
accuracy requirement, the model complexity should be calibrated
so as to minimize the unknown parameters as much as possible.
For instance, in the field of industrial robotics, the parameter
identification concerning the mechanical properties of serial
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 Nomenclature

q q q, ,̇ ¨ motor position, velocity and acceleration
τmot, ,rb payτ τ motor torque, inertial torque due to the mechan-

ism rigid bodies behavior, inertial torque due to the
payload effect
F, ,f cr f sl f sl, , ,τ τ crank and slider friction torques, slider friction
force

i i i v, , ,mot pay inv inv motor current, motor current rate due to the
payload effect, inverter current and inverter voltage
(see Fig. 1)

L L,mot inv motor and inverter electrical losses
P P,mech inv mechanical and inverter powers (see Fig. 1)
q q,max maẋ ¨ maximum motor velocity and acceleration

N q a b, , , ,f h iota0ω ι fundamental frequency, no. of harmonics,
position offset and coefficients of Fourier Series ex-
citing trajectories

f T,s s sampling frequency and period
N N,s r no. of samplings during one trajectory and no. of re-

petitions for each trajectory
, potential energy and kinetic energy

y z z, ,G G B, ,ι ι ι-th body barycentric position in y and y directions,
slider displacement

ωι ι-th body angular velocity
r l, crank and rod lengths (see Fig. 3)
d d,cr rod distances between joints and centers of mass (see

Fig. 3)
, , ,cr cr sl slν μ ν μ crank Columbian and viscous coefficients, slider

Columbian and viscous coefficients
m m m m m, , , ,cr rod sl pay ι crank, rod, slider, payload, ι-th body

masses
J J J, ,cr rod iota crank, rod, ι-th body barycentric inertias

Kt, Kt
^ torque constant, estimated torque constant

K K K K, , ,Fe sw Cu off iron, switching, copper and offset losses
parameters

W Y, , , θΦ regression matrix, observation matrix, dependent
variable and parameters vector

Y Y,e p experimental and predicted values of the generic de-
pendent variable Y

θ estimated value of the generic parameter θ
,

r
σ σθ θ^ ^ standard deviation and relative standard deviation of

the generic estimated parameter θ̂
sx standard deviation of the noise on the generic mea-

sured variable x (see Table 2)
f f f, ,nl pay pd,τ torque function in its non-LP formulation, payload

torque function, power demand predictive function
, , ,l d ld pf,Φ Φ Φ Φτ torque regression matrix in its non-minimal

LP formulation and related parameters, dynamic, loa-
ded dynamic and power flow regression matrices
K, , ,l d t ld pf,

1θ θ θ θ θ≔ [τ τ
− parameters concerning non-minimal LP,

dynamic, loaded dynamic and power flow models
W W W, ,d ld pf dynamic, loaded dynamic and power flow ob-

servation matrices
q q q iq q q i, , ,T T T

mot mot
T

,= [ ] ̇ = [ ̇ ] ¨ = [ ̇ ] = [ ]κ κ κ κ arrays of position,
velocity, acceleration, and motor current data at the
discrete time instant tκ

q q q i P P, , , , ,e e e
mot
e

inv
e

mech
ė ¨ arrays of averaged experimental va-

lues for motor position, velocity, acceleration, current,
inverter power, mechanical power

i P P, ,p
inv
p

mech
p arrays of predicted values for motor current, in-
verter power, mechanical power

x x,e
,κ ι κ average value of the generic variable x during the κ-th

time instant, κ-th sample of the ι-th repeated
experiment.
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manipulators (i.e. the determination of links' masses and moments
of inertia) is based on the use of a dynamic model which is linear
with respect to the parameters to be identified [8,9]. These kinds
of models will be referred to as Linear-in-Parameters (LP). This
linearity property is extremely interesting as long as it con-
siderably simplifies the parameter estimation phase, as discussed
below. Similar LP models can also be applied in order to estimate
some electric motor parameters, as shown in [10]. On the other
hand, nonlinear dynamic effects such as mechanical friction, sev-
eral actuator characteristics or the linkage dynamics when dealing
with closed kinematic chains introduces challenges in the mod-
eling phase which, in several cases, still require further research
(as pointed out in [6]).

Regarding the DOE and the subsequent phases of data acqui-
sition and signal processing, accurate identification procedures
involve specifically designed experiments which are executed on a
physical prototype. The available data (namely, the input value for
the above-mentioned models) is then obtained through direct
measures via a number of sensors and subsequently improved in
terms of signal-to-noise ratio. Naturally, from a practical point of
view, the number of sensors should be reduced to a minimum
when possible. As highlighted in [7], the DOE phase is a subject
that has received particular attention both in the statistical and
robotic literature. For instance, focusing on robot identification, a
set of joint trajectories is usually imposed, the related joint torques
being subsequently measured. In this case, a number of DOE ap-
proaches exist, such as fifth-order polynomials interpolating be-
tween finite sets of joint positions/velocities [11] or finite se-
quences of joint accelerations [12].

Subsequently, the system parameters are computed during the
estimation phase. In the class of estimation algorithms, three
common methods employed in the past literature are the least
squares method, the Kalman filtering and the maximum-like-
lihood estimation [7]. The least square method, applicable only
when dealing with LP models, is a noniterative technique that
determines the parameter estimates in a single step via singular
value decomposition. Alternatively, the Kalman filtering algorithm
is applicable also in case of nonlinear models, although it has been
proven to be less effective for off-line identification [13,14]. Simi-
larly, the maximum likelihood estimation provides consistent es-
timates with minimal uncertainty and is usually solved with
iterative search routines, such as the Levenberg–Marquardt algo-
rithm. The drawbacks of the maximum likelihood estimation are
the necessity of an initial guess for the parameter estimates and
the possibility to converge to a local minimum representing a
suboptimal solution. As a last example, a new technique using
real-coded genetic algorithms has been employed in [15], for ap-
plication on a servo-controlled slider-crank mechanism. Results
are compared to those obtained via the least square method,
which proved to be superior in terms of computational times.

On the basis of the literature review it can be stated that:

� Well-established procedures have been previously employed for
assessing the inertial parameters of serial manipulator [7,16,17]
or simple linkages [15,18]. In parallel, similar techniques have
been used for the determination of some electrical motor
parameters [10,19,20]. Nonetheless, none of the above-men-
tioned literature considers the servo-controlled system as a
whole, by combining the influence of mechanical dynamics,
electric motor dynamics and inverter behavior.
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Fig. 1. Schematic of a simple servo-mechanism. Red circles indicate the sensors
arrangement. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

E. Oliva et al. / Robotics and Computer-Integrated Manufacturing 38 (2016) 31–41 33
 

� Several model of the Power Flow (PF) within servo-actuated
machinery have been presented in the past, see e.g. [2,3,21–23],
the focus being the PF prediction when the system parameters
are known. Hence, none of these models was specifically
conceived nor optimized for identification purposes, namely
derived in a LP formulation.

Owing to the aforementioned considerations, the objective of the
present paper is to outline a novel engineering method for the PF
assessment in single degree-of-freedom linkage systems directly
coupled to permanent magnet synchronous motors. For validation
purposes, the method is hereafter applied and experimentally
evaluated on a slider-crank servo-mechanism, which is taken as a
reference case study. The proposed technique is specifically based
on the sequential identification of the mechanism dynamics fol-
lowed by an assessment of the electrical drive and motor influence
on the system PF. First, the dynamic parameters and the torque
constant are detected together in the presence of a known payload
acting on the slider [9,24]. Second, the electric drive PF is con-
sidered, taking into account the major electrical losses. The identi-
fied parameters are finally merged into an overall PF predictive
model, whose accuracy is evaluated by comparing predicted and
actual power demand along a randomly chosen test trajectory.

Differently from previous literature, the proposed identification
method is characterized by the following features:

� Both dynamic and PF models are derived in a LP formulation,
thus allowing a straightforward DOE and the use of fast and
efficient least square estimation techniques. Such LP formula-
tion has been achieved resorting to appropriate simplifications,
suitable parameters definitions, and a non-trivial modeling ef-
fort (described in the following sections).

� Mechanical and electrical parts are combined to create a com-
prehensive PF model. Usually, the mechanical and the electric
motor dynamics are treated separately. In addition, in the pre-
sent work, the dynamic behavior of the inverter is also included.

� Only position and current values (quadrature current) on the mo-
tor and monophasic measurements of voltage and current on the
drive are necessary to complete the identification process. Hence,
from a practical point of view, the acquisition phase can be carried
out without a power meter nor three phase measurements.

The paper is organized as follows: Section 2 outlines the conceptual
steps of the identification method; Sections 3 and 4 describe the
modeling procedure and the Design of Experiment (DOE); Section 5
discusses data acquisition and signal processing; Section 6 discusses
the estimation phase; Section 7 deals with the model validation,
whereas the experimental results are shown in Section 8. Finally,
Section 9 draws the concluding remarks. In addition, basic notations
(along with a list of acronyms) are included in the Nomenclature
section for clarity.
2. Identification method

Permanent magnet synchronous motors are today the de facto
industry standard for position controlled servo-systems [25]. A
conceptual scheme of the single-d.o.f. servo considered in this paper
is shown in Fig. 1 and comprises a power converter (composed of
rectifier, DC-link and servo-inverter), which drives an electrical
motor connected to a slider-crank mechanism. The variables Pinv and
Pmech respectively denote the total electrical power delivered to the
inverter and the total mechanical power delivered to the motor
shaft. In addition, Fig. 1 highlights the arrangement of the mea-
surement devices, namely the motor encoder and the current and
voltage sensor (indicated via red circles, V, A, and q respectively
denoting a voltage, a current or an angular position measure).
The whole identification process is summarized in the con-

ceptual steps depicted in Fig. 2. The boxes represent the main
phases of the procedure, wide arrows indicate the sequence of
steps and thin arrows show the flux of information. Furthermore,
quantities between blocks intuitively represent the outputs and
the inputs of the previous and consecutive blocks respectively.

First, the dynamic model (DM) of the slider-crank is derived,
assuming only the linkage geometric parameters as known. The
DM describes the relation between the motor quadrature current,
imot, and the motor angular position, q, velocity, q,̇ and accelera-
tion, q̈ (hereafter referred to as kinematic variables). For identifi-
cation purposes, the DM is excited using a suitable trajectory,
defined during the DOE phase. The chosen motion is performed
with and without a known payload attached to the slider, and the
DM variables are sampled using the available measurement in-
struments (as depicted in Fig. 1). The requested set of de-noised
variables, i.e. q q q, ,̇ ¨ and imot, is then obtained during the signal
processing phase. The processed data are used to firstly assess the
motor torque constant, Kt, whose estimated value is indicated as

Kt
^ , along with the linkage dynamic parameters. As previously said,
the estimation process can be faster and more accurate if the
model to be identified is expressed in a LP formulation.

Before being accepted, the estimated DM is validated. Once the
validation test has been accomplished, the identification of the
power flows can begin. Initially, the effects on the PF of the iden-
tifiable electrical devices are modeled. The PF model describes the
difference between the inverter power demand, Pinv, and the me-
chanical power, Pmech, as a LP function of kinematic variables and
motor current. The PF exciting trajectory is chosen again by means
of DOE, grounding on the knowledge of the already estimated dy-
namic parameters. The DM is exploited here to predict the motor
current, allowing the definition of a DOE cost function which de-
pends on the kinematic variables only. Then, the optimal exciting
motion is performed and the sampled data are collected. The signal
processing phase is subsequently carried out once more, defining
the PF through inverter and electric motor. In this regard, it is im-
portant to know the torque constant, that is used to compute the
mechanical power (note, indeed, that the processing phase of the PF

model in Fig. 2 requires the estimated torque constant Kt
^ as an

input). At this point, the PF estimation and validation phases can be
sequentially performed. Once all the models have been validated,
their parameters can be used to define the predictive formulation of
the power demand and to test the prediction accuracy.
3. Modeling

3.1. Mechanism dynamic model

As previously said, the mechanism DM aims at relating, in a LP
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Fig. 2. Schematic representation of the employed identification method.
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fashion, the motor current, imot, and the kinematic variables,
q q q, ,̇ ¨. This LP expression is obtained considering only the essen-
tial physical phenomena contributing to the current flow. In par-
ticular, a formulation of the motor torque, τmot, is firstly derived by
employing the Euler–Lagrange equation and the principle of vir-
tual work [26], along with suitable friction models for the crank
and slider kinematic pairs [27,28]. The friction torques on the
passive rotational joints, namely crank-rod and rod-slider joints,
are reasonably assumed as negligible. The derived model, that is
non-LP, is then rephrased in a LP formulation by changing the
parameters’ definition. Unfortunately, some torque model para-
meters are redundant. Therefore, a minimal and identifiable set of
parameters is defined by means of numerical techniques, as ex-
plained in [16, pp. 417–420]). Once the identifiable formulation of
the motor torque is available, the DM can be finally derived con-
sidering motor torque and current as proportional [16, p. 299], the



Fig. 3. Geometrical scheme of the slider-crank mechanism. The z-axis depicts the
direction of gravity.
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torque constant Kt being the proportionality constant.

Motor torque derivation: The employed formulation of the
motor torque takes into account the torque contributions f cr,τ , f sl,τ ,
and τrb, respectively due to crank friction, slider friction, and
linkage inertia. Hence, the overall motor torque, τmot, can be
written as

1mot f cr f sl rb, ,τ τ τ τ= + + ( )

Crank friction torque, f cr,τ , directly acting on the motor shaft, and
slider friction force, Ff sl, , acting on the slider moving surface, are
modeled using the following basic and effective formulations:

q qsign 2f cr cr cr, ( )τ ν μ= ̇ + ̇ ( )

F z zsign 3f sl sl B sl B, ( )ν μ= ̇ + ̇ ( )

where zḂ is the slider velocity (zB being the slider displacement),
νcr and μcr are the crank Coulomb and viscous friction coefficients,
whereas νsl and μsl are the slider Coulomb and viscous friction
coefficients respectively. The input torque due to the slider friction
is subsequently derived reducing Ff sl, to the motor shaft by means
of the virtual work principle, such that

z
q

F
4

f sl
B

f sl, ,τ = ∂
∂ ( )

where zB, as well as zḂ, are derived as a function of the kinematic
variables, and of the crank and rod lengths, r and l, shown in Fig. 3
and assumed as known. Then, defining and as the me-
chanism kinetic and potential energies, the inertial term, τrb, is
derived employing the Euler–Lagrange equation, such that

⎛
⎝⎜

⎞
⎠⎟

d
dt q q 5

rbτ = ∂( − )
∂ ̇

− ∂( − )
∂ ( )

Kinetic and potential energies are simply derived as

⎡⎣ ⎤⎦J m y z
1
2

1
2 6

G G
1

3
2

,
2

,
2∑ ω= + ̇ + ̇

( )ι
ι ι ι ι ι

=

m gz
7

G
1

3

,∑= −
( )ι

ι ι
=

where, referring to the single ι-th rigid body, Jι is the barycentric
inertia, ωι is the angular velocity, mι is the mass, zG,ι is the bary-
centric position in the z direction, yG,̇ ι and zG,̇ ι are the barycentric
velocities in the y and z directions respectively, and g is the ac-
celeration of gravity. It has to be noticed that the motor rotor is
considered as rigidly connected to the crank, as long as a direct-
drive servo-mechanism is considered (i.e. the absence of gear re-
ducer). In particular, with reference to Fig. 3, let one respectively
define dcr and drod as the distances between crank and rod centers
of masses and either point O or point A. All the positions and
velocities exploited in Eqs. (6) and (7) are then symbolically de-
rived as functions of the kinematic variables q and q,̇ of the known
crank and rod lengths, r and l, and of the unknown distances, dcr
and drod. Hiding the dependence on the known constants r and l,
and summing up the different contributions defined in Eqs. (2),
(4) and (5), the motor torque, τmot, can be written as

f q q q, , , with 8mot nl nl
T

, ,( )θτ = ̇ ¨ ( )τ τ

⎡⎣ ⎤⎦J J m m m d d, , , , , , , , , , 9l cr rod cr rod sl cr rod cr cr sl sl
T

,θ ν μ ν μ= ( )τ

where Jcr and Jrod are the crank and rod barycentric inertias,
whereas m m m, ,cr rod sl are the crank, rod and slider masses re-
spectively. Unfortunately, the model of Eq. (8) is not expressed in a
LP formulation, since some of the rigid bodies' inertial parameters
are multiplied by each other or raised to the second power.

Linear-in-Parameters formulation: It has been noticed that it is
possible to rephrase model of Eq. (8) in a LP formulation by re-
defining nl,θτ in the following fashion:

⎡⎣
⎤⎦

J m d J m d m d m

d m m

, , ,

, , , , , , 10

l cr cr cr rod rod rod cr cr rod

rod rod sl cr cr sl sl
T

,
2 2θ

ν μ ν μ

= + +

( )

τ

The following LP models for the motor torque is then obtained:

q q q, , 11mot l l, ,( )θτ Φ= ̇ ¨ ( )τ τ

where l,Φτ is a regression row matrix which depends only on the
kinematic variables. Unfortunately, as said, since some elements of
the matrix l,Φτ are found to be linear dependent, the parameters
defined in Eq. (10) are not fully identifiable using traditional sys-
tem identification techniques. A suitable identifiable model, de-
scribed using the minimum number of parameters, namely
8 parameters only, is derived employing numerical techniques
based on QR factorization [16, pp. 417–420] and can be written as

q q q, , 12mot d( )θτ Φ= ̇ ¨ ( )τ

where the vector of parameters θτ is defined as

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

J m d m r m r

J m d m l

m d m r m l

m d m l

13

cr cr cr rod sl

rod rod rod sl

cr cr rod sl

rod rod sl

cr

cr

sl

sl

2 2 2

2 2

θ
ν
μ
ν
μ

=

+ + +

+ +
+ +

+

( )

τ

In addition, for 1, , 8ι = … , the single elements of the Regression
row matrix d d,ΦΦ = [ ]ι are shown in Table 1. Once the minimal LP
formulation of τmot is derived, the DM is simply obtained imposing
a linear motor torque–current relation, such that

K i 14mot t motτ = ( )

Substituting the torque model of Eq. (12) inside Eq. (14), the fol-
lowing formulation is achieved:

K i q q q, , 15t mot d( )θΦ= ̇ ¨ ( )τ

Starting from Eq. (15), the DM is easily obtained as

⎡⎣ ⎤⎦i q q q K q q q, , / , , 16mot d t d d( ) ( )θ θΦ Φ= ̇ ¨ = ̇ ¨ ( )τ

having defined, for the sake of simplicity, the dynamic parameters
vector, Kd t

1θ θ= τ
− .



 
Table 1
Definition of the dynamic regression matrix elements.

Element Definition

1/sd,1
2Φ ( ) q̈

1/sd,2
2Φ ( ) c r qc r qc l qc r s q l s q r

h

q q q q q q
2 3 2 2 2 2 2 2 2

4

( ¨ + ¨ − ¨ − ̇ + ̇ )

m/sd,3
2Φ ( ) s gq

m/sd,4
2Φ ( ) r qc r c s q r qhc r hc s q r gc s r qc l r

qc r qhc l qhc r

h l

r qc l r qc r s q l r s q r s q l r s q r s

hq l s hq r s gl s gr

h l

4 4 4 4 2 4

8 4 4

2
4 4 6 6 4 4 2

2

2

q q q q q q q q q

q q q

q q q q q q q

q q q

2 5 3 4 2 3 4 2 3 2 2 3 2 3 2

3 3 2 2 2 2

3

2 2 3 3 2 2 3 2 3 2 2 2 3
2

2 2
2

2 2
2

2
2

2

3

( − ¨ + ̇ − ¨ + ̇ + − ¨

+ ¨ − ¨ + ¨ )

+

( ¨ − ¨ − ̇ + ̇ + ̇ − ̇ +

̇ − ̇ + − )

1d,5Φ ( ) qsign( )̇
1/sd,6Φ ( ) q ̇
md,7Φ ( )

q rs
rc

h
sign 1q

q( )̇ [ + ]

m /sd,8
2Φ ( ) q rs

rc

h
1q

q 2̇ { [ + ]}

Symbols: h l r q c x s xsin ; cos ; sinx x
2 2 2= − = = ; x being a generic variable
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3.2. Loaded dynamic model

The Loaded DM is simply an extension of the DM that also takes
into account the influence of a known payload attached to the
slider. The torque contribution due to the known payload mass,
mpay, is modeled considering the rate on the motor torque owing
to the payload:

q q q, , 17pay d pay( )θτ Φ= ̇ ¨ ( )

where payθ is derived from θτ from Eq. (13) by considering a slider
mass equal to the payload mass and by neglecting all the other
terms. The analytical description of payθ is

m r m l m l m l, , , , 0, 0, 0, 0 18pay pay pay pay pay
T2 2θ = [ ] ( )

By substituting Eq. (18) inside Eq. (17), the following formulation is
derived:

f q q q m, , , with 19pay pay pay( )τ = ̇ ¨ ( )

f m r l l l 20pay pay d d d d,1
2

,2
2

,3 ,4( )Φ Φ Φ Φ= + + + ( )

The motor current rate due to the payload, ipay, is then obtained
simply dividing τpay by the torque constant Kt. Adding this con-
tribution to the dynamic model of Eq. (16), the following equation
is obtained:

i q q q m, , , 21mot ld pay ld( )θΦ= ̇ ¨ ( )

where ldΦ and ldθ are respectively the regression matrices and the
parameters of the Loaded DM, defined as

⎡
⎣⎢

⎤
⎦⎥K1/ld

d

t
θ

θ
=

⎡⎣ ⎤⎦q q q m q q q f q q q m, , , , , , , , , 22ld pay d pay pay( ) ( )( )Φ Φ̇ ¨ = ̇ ¨ ̇ ¨ ( )

3.3. Power flow model

With reference to Fig. 1, the PF model of the servo-mechanism
takes into account the power flowing to the inverter, Pinv, and the
power flowing from the electric motor to the linkage mechanism,
Pmech. Accurate and complex models of both motor and inverter
have been widely investigated in the literature [4,19,10,20].
Nonetheless, in the identification method proposed in this paper
only simple and effective formulations depending on the kine-
matic variables and on the motor quadrature current shall be used.
Hence, the electric motor is modeled neglecting any energy sto-
rage and considering only the main physical contribution to the
electrical losses. Similar to [2], these losses are described using the
following model:

L K i K q 23mot Cu mot Fe
2= + ̇ ( )

where KCu and KFe are the copper and iron losses parameters re-
spectively. In parallel, the inverter model is obtained considering
only the switching losses and neglecting again any energy storage:

L K i 24inv sw mot= ( )

Ksw being the switching losses parameter. According to experi-
mental evidences, an offset term, Koff, is added to take into account
any measurement offset or any constant loss term. Concerning
these constant losses, as highlighted in [29], they are due to the
permanent power requirements of the control electronics within
the power converter. By summing up Eqs. (23) and (24) to this
offset term, Koff, the PF model can be described in the following
minimal LP fashion:

P P K i K q K i K 25inv mech Cu mot Fe sw mot off
2− = + ̇ + + ( )

which can be rewritten in a matrix formulation as

P P q i, 26inv mech pf mot pf( )θΦ− = ̇ ( )

where pfΦ is denoted as PF Regression Matrix, whereas the vector
pfθ indicates the PF Parameters and is trivially defined as

⎡⎣ ⎤⎦K K K K, , , 27pf Cu Fe sw off
Tθ = ( )

3.4. Predictive formulation of power demand

The symbolic formulation of the mechanical power, Pmech, is
obtained by firstly multiplying the motor velocity by the motor
torque, and then by exploiting the motor torque–current relation
of Eq. (14):

P q P qK i 28mech mot mech t motτ= ̇ → = ̇ ( )
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The inverter power demand, Pinv, can be derived summing up the
mechanical power of Eq. (28) and the PF model described by Eq.
(26), such that

P qK i q i, 29inv t mot pf mot pf( )θΦ= ̇ + ̇ ( )

Finally, by replacing the DM of Eq. (16) inside Eq. (29), the fol-
lowing predictive formulation is obtained:

P f q q q K, , , , , 30inv pd d t pf( )θ θ= ̇ ¨ ( )
4. Design of Experiments

As said, in order to improve the convergence rate and the noise
immunity during the estimation procedure, proper exciting ex-
periments must be carefully selected. This DOE phase is thor-
oughly discussed in [5, Section 13], where the author treats the
experiment design in a general context, showing how it can be
performed for all types of models. However, in the case of LP
models, the DOE can be formulated in a particularly straight-for-
ward manner including three main steps: (a) the choice of a
parameterization for the trajectory; (b) the selection of a cost
function; (c) the derivation of the best exciting trajectory, by
means of optimization techniques. Among all the possible meth-
ods to address these DOE steps, the particular choices made in the
present work to optimally handle the considered case study can be
described as follows:

� Parameterization: In order to obtain periodic and band-limited
measurements, trajectories are parameterized as Finite Fourier
Series:

⎡
⎣⎢

⎤
⎦⎥q t q a t b tsin cos

31

N

f f0
1

h

( ) ( )∑ ιω ιω( ) = + +
( )ι

ι ι
=

where t represents time, q0 is the position offset at t¼0, ωf is
the fundamental frequency and Nh is the number of harmonics.
Finding optimal values for aι and bι coefficients is now the DOE
objective.

� Cost functions: Different cost functions can be chosen [16, pp.
296–298]. Considering the so-called observation matrix W ,
where each row is defined as the evaluation of the regression
matrix, Φ, at a discrete time instant, tκ , the matrix condition
number provides a good estimate of the parameters observa-
bility. For instance, optimal trajectory coefficients are character-
ized by a condition number of matrix W which is close to one.
Thus, the cost function has been defined as

W W WCost cond 32( )= = ∥ ∥·∥ ∥ ( )+

where the symbol (·)+ denotes the matrix Pseudo-inverse. In
particular, the cost function for the DM exciting trajectory is

W q q qCost cond , , 33d d( ( ))= ̇ ¨ ( )

where, for 1, , 8ι = … and N1, , sκ = … , the vectors q q T= [ ]κ ,
q q Ṫ = [ ̇ ]κ , q q T¨ = [ ̇ ]κ are arrays of length Ns, whose elements,
q q q, ,̇ ¨κ κ κ , are position, velocity and acceleration data derived
from Eq. (31) at the discrete time instant tκ . In parallel, the
matrix W q q q, ,d d,Φ= [ ( ̇ ¨ )]ι κ κ κ is computed accordingly on the
basis of the Regression row matrix dΦ (see Eq. (12) and Table 1).
Similarly, the cost function for the PF model exciting trajectory
is defined as

W q iCost cond , with 34pf pf mot( ( ))= ̇ ( )
i W q q q, , 35mot d d( )θ= ̇ ¨ ( )

where dθ are the estimated dynamic parameters, whereas, for
i1, ,ι = … and N1, , sκ = … , the vector i imot mot

T
,= [ ]κ is an array

of length Ns whose elements, imot,κ , are the motor currents
sampled at the discrete time instant tκ . In parallel, the matrix
W q q q, ,pf pf ,Φ= [ ( ̇ ¨ )]ι κ κ κ is computed accordingly on the basis of
the Regression row matrix pfΦ (see Eq. (26)).

� Optimization: The optimization step is carried out employing
the fmincon Matlab function, which is used for constrained
optimization problems and allows constraint enforcements on
maximum velocities and accelerations, such as

q q q qand 36max maẋ < ̇ ¨ < ¨ ( )

At the end of the procedure, optimal exciting trajectory coeffi-
cients, aj and bj, are found.
5. Data acquisition and signal processing

Naturally, the proposed method is widely dependent on the
employed measuring instruments. In fact, factors like the accuracy
of the measurements and the possibility to sample some variables
rather than others determine the models that can be obtained.
Due to the structure of the proposed method, the variables that are
absolutely essential for identification purposes are the motor an-
gular position, q, velocity, q,̇ and acceleration, q̈, the motor current,
imot, and at least one power measure downstream of the motor.
These variables can be directly sampled or derived during the
processing phase. Therefore, the main aim of the data processing is
to derive all the requested de-noised experimental variables. How
this objective can be effectively achieved depends on the type of
measures, e.g. mono-phase or three-phase electrical measures
[30], and on the de-noising techniques that are applied, e.g. data
filtering or averaging [5, Section 14].

For what concerns the present case study, as conceptually de-
picted in Fig. 1, the variables that are directly sampled are motor
angular position, q, motor and inverter currents, imot and iinv, and
DC-link voltage, vinv. Sampled angular positions are then filtered
using a low-pass Butterworth filter in both forward and backward
direction using the filtfilt Matlab function, thus removing noise
without adding any phase shift to the signal [16, pp. 298–299].
Velocities, q ̇, and accelerations, q̈, are finally derived applying
second order central differences to the filtered positions.

Subsequently, mechanical power, Pmech, and inverter power
demand, Pinv, are computed as

P qK i 37mech t mot= ̇^ ( )

P i v 38inv inv inv= ( )

where Kt
^ is the estimated value of the torque constant, iinv, vinv and

imot are measured variables, and q ̇ is derived from q as previously
shown. Since an estimate for Kt is not initially known, the me-
chanical power can only be computed when the dynamic identi-
fication has been already performed, as shown in Fig. 2.

For what concerns signal de-noising, similar to [7], data aver-
aging techniques over periodic trajectories have been employed. In
this way, the signal-to-noise ratio is increased and the noise level
of the signal is estimated. Denoting Nr as the number of repetitions
of the same experiment and Ns as the number of samplings during
each experiment, the employed formulas are
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where xe
κ is the average value of the generic variable x during the

κ-th time instant, s2x is the sample variance of signal x, and x ,ι κ is
the κ-th sample of the ι-th repeated experiment.
6. Estimation

Within the literature several estimation methods are shown [5,
Section 7] which are applicable for generic model structures.
However, when treating linear problems, it is well known that the
least squares estimator has several advantages. In fact, the para-
meters derivation is computationally inexpensive and does not
require to set any initial values. Since both the loaded DM
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Fig. 5. Exciting trajectory for the (a) DM and (b) PF model respectively.

Table 2
Standard Deviation of the noise on the averaged measurements.

x q (rad) imot (A) Pinv (W)

sx 1.30�10�3 3.25�10�2 6.65

Table 3
Identified parameter values and accuracy.

Parameter Mean value %
r

σθ̂

A sd,1
2θ̂ ( ) 0.0175 0.31

A sd,2
2θ̂ ( ) 0.0776 0.82

A s /md,3
2θ̂ ( ) 0.132 0.43

A s /md,4
2θ̂ ( ) 0.220 0.39

Ad,5θ̂ ( ) 0.0726 12.09

A sd,6θ̂ ( ) 0.0150 3.11

A/md,7θ̂ ( ) 5.71 2.71

A s/md,8
2θ̂ ( ) 2.37 2.06

K1/ A/N mt
^ ( ) 0.412 0.21

KCu
^ (Ω) 1.03 2.22

K W sFe
^ ( ) 0.581 2.78

K Vsw
^ ( ) 5.67 2.80

K Woff
^ ( ) 20.2 0.90
expressed by Eq. (21) and the PF model expressed by Eq. (26) are
recast in a LP formulations, all the unknown parameters are
identified using the least square estimator. In particular, the pro-
posed method makes use of ordinary un-weighted least squares:

⎡⎣ ⎤⎦W W W Y W Y 41
T T1( )θ = = ( )

− +

where YY T= [ ]κ denotes a vector containing the generic dependent
variable Yκ evaluated at the discrete time instant tκ .

Both dynamic parameters and torque constant are identified
using the following formula:

⎡⎣ ⎤⎦W q q q m i, , , 42ld ld
e e e

pay mot
e( )θ = ̇ ¨ ( )

+

where q q q, ,e e ė ¨ and imot
e are arrays of length 2Ns containing the

averaged experimental values of q q q, ,e e ė ¨ and imot
e in 2Ns sampling

points. Recall, in fact, that the same exciting trajectory is repeated
with and without a payload, mpay, mounted on the slider. Hence,
the payload mass vector, mpay, is an array of the same dimension of
qe, whose values are either zeros when the payload is not mounted
or mpay when the payload is mounted.

Once the dynamic parameters and the torque constant are es-
timated, the PF parameters are identified using the following for-
mulation:

⎡⎣ ⎤⎦W q i P P, 43pf pf
e

mot
e

inv
e

mech
e( ) ( )θ = ̇ − ( )

+

where qė , imot
e , Pinv

e and Pmech
e are arrays of averaged experimental

values having length Ns. Indeed, during the estimation of the PF
parameters, the exciting trajectories are repeated only without
payload.
7. Validation

Before accepting the estimated models, it is a good practice to
check their accuracy. If a certain model does not satisfy the vali-
dation phase, the previous phases (e.g. modeling, DOE and esti-
mation) should be revised. Several validation techniques are
known [5, Section 16], which may be applicable to generic model
structures or to LP models only. In particular, when dealing with LP
models, it is worthwhile to perform the analysis of the parameters
accuracy. In fact, the confidence interval of the identified para-
meters can be derived by comparing the parameter values ob-
tained over different exciting trajectories. However, this approach
is very time consuming. Luckily, when dealing with LP models, the
confidence interval can be quickly derived from the parameters
covariance matrix [5, App. II]. Once the Standard Deviation, σθ̂ , of a
certain parameter is derived, e.g. using the lscov Matlab function,
its accuracy can be evaluated checking the Relative Standard De-
viation,

r
σθ̂ , defined as



 
Table 4
RMSE and NRMSE of the predicted dependent variables over the validation
trajectories.

Dynamic model validation trajectory

RMSE NRMSE

imot 0.200 A 1.27%
Power flow model validation trajectory

RMSE NRMSE

P Pinv mech− 10.4 W 5.63%
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Fig. 6. Test trajectory.

Table 5
RMSE and NRMSE of the predicted inverter power demand over the test trajectory.

Test trajectory

RMSE NRMSE

Pinv 8.96 W 1.57%
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θ
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^

In parallel to the parameter accuracy, it is surely worthwhile to
estimate the residuals, i.e. the prediction error. This technique
presents the considerable advantage of being suitable for all model
structures and should be taken as a reference. In this case, the
model predictive capability is tested on a validation trajectory that
is consistently different from the ones used during the identifi-
cation process. During this phase, the identified model is used to
predict its output variable (namely imot for the DM and P Pinv mech−
for the PF model) exploiting the experimental variables as inputs
(namely q q q, ,̇ ¨ for the DM and q i, moṫ for the PF model). Denoting
Yp as the generic predicted output vector, the prediction accuracy
of the model is derived comparing that vector with the experi-
mental output vector Ye. In particular, the Root Mean Square Error
(RMSE) and the Normalized Root Mean Square Error (NRMSE) can
be used as representative values of the predictive accuracy:
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Once both DM and PF models have been estimated and validated,
the predictive equation of the inverter power demand can be de-
fined and its accuracy checked analyzing its predictive capability
on a random test trajectory. Employing Eqs. (16) and (26), the
predictive outputs are computed as

i W q q q, , 47mot
p

d
e e e

d( )θ= ̇ ¨ ( )

P P W q i, 48inv mech
p

pf
e

mot
e

pf( ) ( )θ− = ̇ ( )

Finally, for what concerns the accuracy check on the power de-
mand, the following expression is employed:

P q q qf K, , , , , 49inv
p

pd
e e e

d t pf( )θ θ= ̇ ¨ ( )

where K, ,d t elθ θ are the estimated parameters.
8. Experimental results

The proposed identification technique is validated employing
experimental measures obtained on a servo-mechanism physical
prototype, whose schematic is depicted in Fig. 4. The experimental
rig is composed of a slider-crank mechanism directly coupled with
a Beckhoff AM3072 synchronous motor and a Beckhoff AX5112
electrical drive. The control system is based on TwinCAT software,
i.e. the PC-based control platform owned by Beckhoff, connected
to the drive via EtherCAT fieldbus. The motor shaft angular posi-
tions, q, are measured using the motor encoder, whereas the
electrical variables i i,mot inv and vinv are provided by the proprietary
software TwinCAT, with a sampling frequency fs of 2000 Hz.

For what concerns the exciting trajectories, Fig. 5(a) and
(b) respectively depict the optimal position profiles employed
during DM and PF identification respectively. These optimal ex-
citing motions have been parameterized as Finite Fourier Series
(see Eq. (31)), the fundamental frequency ωf being set to 1 rad/s
and the number of harmonics Nh being set to 5 (following advices
given in [7]). The Fourier Series' parameters have been computed
in order to minimize cost functions of Eqs. (33) and (34) respec-
tively, velocity and acceleration constraints of Eq. (36) being set as
q 25 rad/smaẋ = and q 250 rad/smax

2¨ = .
As for the signal processing results, Table 2 shows the Standard

Deviation of the measured variables q and imot, and of the derived
variable Pinv. These values are obtained as the square roots of the
sample variances (see Eq. (40)) during a certain repeated
trajectory.

For what concerns parameters accuracy, results are shown in
d current Current estimation error

r current over the test trajectory.
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Table 3, which confirms the effectiveness of the identification
process. In particular, all parameters are characterized by %

r
σθ̂

lower than 3.11% (related to d,6θ̂ ). The only parameter that has been

estimated with a lower accuracy (namely % 12.09%
r

σ =θ̂ ) is d,5θ̂ , the
one related to the Coulomb crank friction, probably because the
simple friction model employed did not perfectly fit the friction
behavior of the physical prototype. Subsequently, the estimated
DM and PF models are validated on a random test trajectory,
which is repeated only once and without any payload. As shown in
Table 4, the NRMSE for the DM is slightly higher than 1%, showing
an excellent predictive capability. In parallel, the RMSE for the PF
model is lower than 11 W, showing an accuracy severely com-
parable with the one of the inverter power measurement itself
(see Table 2).

Finally, the predictive formulation of Eq. (49), defined exploit-
ing the parameters shown in Table 3, is used to predict the power
demand over the test trajectory shown in Fig. 6, whose overall
profile is chosen to be different from the one of the identification
and validation trajectories. The trajectory consists in 9 acceleration
trapezoidal motions, with jerk limitation, passing through 8 ran-
domly chosen motor angles. Waiting time between different mo-
tions is set to zero. The experimental and predicted values are then
compared using Eqs. (45) and (46). The results are numerically
summarized in Table 5. In addition, Fig. 7 shows the value of the
inverter current when the servo-mechanism is performing the test
trajectory. The leftmost picture depicts the measured values, the
central picture depicts the values predicted using the proposed
model after parameter identification, whereas the rightmost pic-
ture depicts the prediction error, namely the difference between
measured and predicted results. These graphs clearly highlight
that the order of magnitude of the prediction error is comparable
to the noise of the experimental measure. At last, Fig. 8 shows the
value of the inverter power for the same test trajectory (the
rightmost and central picture representing measured and pre-
dicted powers, the leftmost picture representing the prediction
error). Also in this case, the graph shows an optimal prediction
accuracy. Note that the central graph in Fig. 8 also depicts the
influence of the power losses (red dashed line), numerically
computed by means of the proposed model, highlighting the
usefulness of the described technique to evaluate the system los-
ses without the need to measure them directly.
9. Conclusions

A novel method for the power flow assessment of a position-
controlled servo-mechanism has been discussed. At first, a power
flow model of the system is proposed, describing the dynamic
behavior of linkage, electric motor and inverter. Differently from
previous literature, the model not only accounts for the major
sources of power loss within the electronic driver, but it is also
recast into a Linear-in-Parameters formulation to be optimally
employed for identification purposes. The system parameters are
indeed successfully identified via a set of non-invasive experi-
mental measures, acquired while proper exciting trajectories are
executed. Despite the simplifications necessarily introduced in the
modeling part, the proposed formulation has shown excellent
predictive capabilities, as long as the power prediction error is
severely comparable to the noise of the power measure itself. At
last, note that the proposed procedure can be easily re-arranged
for assessing the power flow of generic single-degree-of-freedom
linkage systems actuated via position-controlled electric motors.
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