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A B S T R A C T

This paper introduces and investigates a novel Spherical Flexure (SF), specifically conceived
for application on spherical compliant mechanisms. The flexure features an arc of a circle as
a centroidal axis and an annulus sector as cross-section, circle and annulus having a common
center coinciding to that of the desired spherical motion. In this context, each element of the
SF spatial compliance matrix is analytically computed as a function of both flexure dimen-
sions and employed material. The theoretical model is then validated by relating analytical
data with the results obtained through three-dimensional Finite Element Analysis. Finally,
SFs are compared to Circularly Curved-Beam Flexures (CCBFs) in terms of parasitic motions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Flexure hinges can profitably substitute traditional kinematic pairs in those articulated mechanisms which require absence of
backlash and friction but restricted range of motion. Common applications span high precision manufacturing [1,2], minimally
invasive surgery [3,4] and micro-electromechanical systems (MEMS) [5,6]. Several studies have been dedicated to the design,
characterization and comparative evaluation of straight-beam flexures and compliant mechanisms formed therewith, see e.g.
Refs. [7,8,9]. Lobuntiu and Cullin [10] have recently introduced the two-segment circular-axis symmetric notch flexure and
compared its in-plane compliance with that of the straight-axis counterpart. Parvari Rad et al. [11] have evaluated the spatial
compliance of Circularly Curved-Beam Flexures (CCBFs), featuring an arc of a circle as a centroidal axis (see curve C in Fig. 1)
and a rectangular cross-section (Fig. 2). In addition, Berselli et al. [12] have quantitatively compared CCBFs with straight-beam
flexures in terms of maximum achievable rotation and selective compliance.

In any case, most of the aforementioned flexures have been conceived and applied to planar compliant mechanisms. Despite
the practical relevance, investigations on compliant hinges specifically designed for spatial mechanisms are instead quite lim-
ited. One of the most important classes of spatial mechanisms is the spherical linkage. In spherical mechanisms, all points of the
end-link are constrained to move on concentric spherical surfaces that are fixed with respect to the base. To date, only a limited
number of works have investigated compliant joints specifically designed for spherical motion, as well as fully compliant spher-
ical mechanisms. Smith [13] proposed compliant universal joints fabricated from circular leaf springs, which also provided axial
translation for self-alignment applications. However, the proposed joints are affected by significant stress concentrations that
limit their ranges of motion. Lobontiu et al. [14,15] investigated the two- and three-axis flexure hinges. The former consists of
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Fig. 1. Circularly curved-beam flexures.
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Fig. 2. Cross section properties of CCBFs.

two collocated notches that are cut perpendicular to each other; the latter consists of an axial-symmetric notch. In both cases,
the resulting hinge features a small cross-sectional area and is prone to unintentional rotations or buckling even when loaded
with small forces. Moon et al. [16] developed a compliant revolute hinge based on torsion beams of cross or segmented-cross
type, and employed two of them, connected in series with orthogonal axes, to conceive a fully compliant universal joint. Later
on, the ensemble of two universal joints of this kind has been proposed by Machekposhti et al. [17] to obtain a compliant con-
stant velocity Double-Hooke’s universal joint. Different authors [18,19] employed two in-series connected flexure notch hinges
with orthogonal axes to conceive a fully compliant universal joint. Jacobsen et al. [20] employed three in-series connected lam-
ina emergent torsional joints, with axes intersecting in a single point, to make spherical chains with three degrees of freedom
(for compliant joints or mechanisms, the number of degrees of freedom is intended as the number of independent prevalent
directions of motion). These spherical chains were then used to build a 3-RRR spherical parallel mechanism (R being a revolute
joint). Callegari et al. [21] addressed the analysis and design of a 3-CRU spherical parallel mechanism with flexure hinges (C and
U being cylindrical and universal joints respectively). Li and Chen [22] employed two circularly curved deformable segments
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Fig. 4. Cross section properties of SFs.
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with rectangular cross-section to devise a spherical Young parallel mechanism. Apart the works by Lobontiu et al. and that by Li
and Chen, all the aforementioned studies are based on the use and proper combination of primitive flexures that are specifically
conceived for prevalent planar motions only.

This paper analyzes the compliance performances of a flexure that has been specifically conceived for spherical compliant
mechanisms. The flexure, hereafter identified as Spherical Flexure or SF in short, features an arc of a circle as a centroidal axis
(see curve C in Fig. 3) and an annulus sector as cross section (Fig. 4), with circle and annulus sharing the same center at point O0.

The axis of the smaller SF central moment of inertia, Im, passes through the desired center of spherical motion. This makes
the SF exhibit a prevalent compliance with respect to rotations occurring about axes lying on the centroidal axis plane. In fact,
preliminary investigations previously performed by the authors [23] suggest that the introduction of SFs seems promising in
order to reduce parasitic motions in compliant spherical chains such as, for instance, the 2R and 3R spherical chains (Figs. 5
and 6). Owing to these considerations, this paper thoroughly addresses the analytical derivation of the SF compliance matrix
as a function of both hinge dimensions and employed material. In particular, each matrix element is computed resorting to
the general method proposed by Jafari et al. [24] and accounting for the exact expression of the torsional constant as found in
previous literature [25]. After compliance factors’ verification via three-dimensional Finite Element Analysis (FEA), the proposed
SF is finally compared in terms of parasitic motions to a CCBF featuring equivalent primary compliance with respect to moments
acting in the centroidal axis plane.

2. Closed-form compliance equations for Spherical Flexures

2.1. Formulation

Similarly to Ref. [24], referring to Fig. 7, consider a curved cantilever beam with uniform cross section and with a circular
centroidal axis that is centered at point O0. The beam features one fixed end (on the left, at node 1) and is generically loaded at
the opposite free end (on the right). For the beam, define a free end coordinate system S0, with origin in O0 and orthogonal axes
i, j and k, where j lies along the intersection between beam symmetry plane and centroidal axis plane, k is perpendicular to the
centroidal axis plane and i follows the right hand rule. In addition, define a local coordinate system Sl located on the centroid
of a generic beam cross section and with axes l, m and n lying along the tangent, normal and binormal to the beam centroidal
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Fig. 6. 3R compliant chain.
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Fig. 7. Generic cantilever curved beam loaded at the free end.

axis (that is, l, m and n are the cross section tangent and principal unit vectors, with n being parallel to k). As a result of load
application, the beam deforms and produces a change in position and orientation of the free end. Let 0w (with components
expressed in S0) describe the external generalized force vector applied at the free end and 0s (with components expressed in S0)
describe the resulting displacement vector of the free end:

0w =
[

fx fy fz mx my mz
]T

(1)
0s =

[
u v w a 0 x

]T

The terms fx, fy, fz and mx, my, mz denote, respectively, the three forces and torques applied to the beam free end, whereas u,
v, w and a, 0, x denote, respectively, the three displacements and rotations undergone by the beam free end along the i, j and k
directions. Applied forces are considered to pass through point O0; displacements are those of point O0 that moves rigidly with
the flexure free end.

The curve defining the centroidal axis (i.e. the circular curve C with center O0 in Figs. 1 and 3) is described by means of vector
0r(s), namely the position vector connecting the centroid of the section to the center of S0, the variable s being the curvilinear
coordinate along curve C. The relative orientation of the local and global coordinates can be expressed by means of the rotation
matrix lR0(s), so that lR0(s)=

[
l m n

]
T •

[
i j k

]
.

The load 0w acting on the free end is balanced by a load lw
′

acting on the element ds. This load lw
′

produces a deformation
per unit length, lE, on the same element. The vectors lw

′
and lE and the corresponding analytical relation can be expressed as:

lw′ =
[

fl fm fn ml mm mn
]T

(2)
lE =

[
4ll clm cln jll jlm jln

]T

lw′ = K • lE

The terms fl, fm, fn and ml, mm, mn denote, respectively, the three forces and torques applied to the element ds, whereas 4ll, clm,
cln and j ll, j lm, j ln denote, respectively, the three displacements and rotations undergone by the element ds along the l, m and
n directions. In addition, the matrix K is the rigidity matrix of the element ds that can be written as:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

EA 0 0 0 0 0
0 bmGA 0 0 0 0
0 0 bnGA 0 0 0
0 0 0 GJ 0 0
0 0 0 0 EIm 0
0 0 0 0 0 EIn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3)

where A, bm, bn, Im, In, J, E and G are, respectively, cross section area, shear coefficients, area moments of inertia and torsional
constant of the beam’s cross section, Young’s modulus and shear modulus of the employed material. The deformation, dls

′
, of

the element ds, due to the load lw
′
, is defined by:

dls′ =
[

du′ dv′ dw′ da′ d0′ dx′ ]T
= lE • ds (4)

where u
′
, v

′
, w

′
and a

′
, 0

′
, x

′
are respectively displacements and rotations of the element ds in the l, m and n directions. The load

lw
′
, acting on ds and due to the presence of a load 0w on the free end, can be computed via the adjoint transformation matrix
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lT0 between free end and local coordinates. In particular, the following relation holds:

lw′ = lT0 • 0w, where lT0 =

[
lR0 0

lR0 • 0̃r
T lR0

]
(5)

having defined 0̃rs as the cross product matrix of vector 0r. In addition, the deformation of the element ds, denoted as dls′, causes
a deformation at the free end, d0s, that can be calculated by merging Eqs. (2), (4), and (5) as:

d0s = lTT
0

• dls′ ⇒ d0s = lTT
0

• K−1 • lT0 • 0w • ds (6)

By integrating Eq. (6) along curve C, one can find the relation between the load 0w and the displacement 0s of the free end
as follows:

0s = 0C • 0w, where 0C =
∫
C

lTT
0

• K−1 • lT0 • ds (7)

Matrix 0C is the compliance matrix for a general cantilever curved beam loaded at the free end and represents the relationship
between the applied loads and the corresponding deflections at the same point Oo. For a generic circular beam, the following
expressions are found concerning vector 0r, matrix lR0 and, therefore, for matrix lT0:

0r =

⎡⎣ −R sin(h)
R cos(h)

0

⎤⎦ lR0 =

⎡⎣ cos(h) sin(h) 0
− sin(h) cos(h) 0

0 0 1

⎤⎦ lT0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos(h) sin(h) 0 0 0 0
− sin(h) cos(h) 0 0 0 0

0 0 1 0 0 0
0 0 −R cos(h) sin(h) 0
0 0 0 − sin(h) cos(h) 0

R cos(h) R sin(h) 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(8)

The variable R and h in Eq. (8) represent the radius and subtended angle of the centroidal axis as depicted in Figs. 1 and 3. By
inserting the expression for lT0 in Eq. (7), the compliance matrix, 0C, of a circular beam with uniform cross section (see, e.g.
Fig. 7) can be computed as follows:

0C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Cx,fx 0 0 0 0 Cx,mz

0 Cy,fy 0 0 0 0
0 0 Cz,fz Cz,mx 0 0
0 0 Chx ,fz Chx ,mx 0 0
0 0 0 0 Chy ,my 0

Chz ,fx 0 0 0 0 Chz ,mz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(9)

where:

Cx,fx =
R

(
AbmGR2(h + sin(h)) + In(h(bmG + E) + (bmG − E) sin(h))

)
2EAbmGIn

Cy,fy = − R
(
AbmGR2(sin(h) − h) − In(h(bmG + E) + (E − bmG) sin(h))

)
2EAbmGIn

Cx,mz = Chz ,fx =
2R2 sin(h/2)

EIn
Cz,fz =

hR
(
AbnR2 + J

)
AbnGJ

Cz,mx = Chx ,fz =
−2R2 sin(h/2)

GJ
Chx ,mx =

R (GJ(h − sin(h)) + EIm(h + sin(h)))
2EGJIm

Chy ,my = − R (E(sin(h) − h)Im − GJ(h + sin(h)))
2EGJIm

Chz ,mz =
Rh
EIn

(10)

In case the flexure can be reasonably approximated as a slender beam (i.e. the length to thickness ratio is ≥10, as suggested in
Ref. [26]), shear induced deformations become negligible and the shear coefficients, bm and bn in Eq. (3), can be set to infinity.
With this position, the compliance factors Cx,fx , Cy,fy , and Cz,fz simplify as follows:

Cx,fx =
R

(
(h + sin(h))

(
AR2 + In

))
2EAIn

Cy,fy = − R
(
(sin(h) − h)

(
AR2 + In

))
2EAIn

Cz,fz =
R3h

GJ
(11)

Equations (9)–(11) hold for any slender circularly curved beam with generic cross section and undergoing small deflections
around its undeformed configuration. As such, they can be specialized for slender SFs and CCBFs on the basis of the specific
expressions for the flexure characteristic parameters A, J, Im and In. Irrespective of the beam cross section, Eq. (9) shows that
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the purely translational and rotational sub-blocks of matrix 0C are diagonal, which means that axes i, j and k are aligned
to the principal directions of compliance of the flexure. However, for the chosen origin of S0, some coupling exists between
the rotational and translational components of loading and deflection. In particular, moments applied about the i and k axes
induce displacements along k and i directions respectively (and of course, due to matrix symmetry, forces applied along the
i and k axes induce rotations about k and i directions respectively). This means that point O0 is not the elastic center of the
hinge (also referred to as center of stiffness [27]). Moreover, the following is worth to be mentioned: like the CCBF, despite
its spherical geometry, also the SF does not guarantee a perfect spherical motion of its free end. Indeed, non-zero forces (fx, fy,
and fz) and torques (mz and mx) about k and i directions produce undesired non-zero displacements of point O0. Nonetheless,
Eqs. (9)–(11) highlight that a nearly spherical motion for the free end of circularly curved beams can be accomplished by select-
ing hinge cross sections with large ratios J/Im and In/Im, and with relatively large area A. In such an instance, indeed, only the
primary compliance factors Chx ,mx and Chy ,my remain of finite value, whereas all the secondary compliance factors Cx,fx , Cy,fy , Cz,fz ,
Cx,mz , Cz,mx and Chz ,mz tend to vanish. By exploiting this, in the following, the annulus sector cross section of the SF is shown to
outperform the rectangular cross section of an equivalent CCBF in providing a flexure with free end deflections that are closer
to spherical motions (that is, a flexure with smaller secondary compliance factors).

2.2. Cross section properties and torsional constant

In order to compute the SF and CCBF compliance matrices as a function of the hinge geometry, it is necessary to analytically
express the cross sectional properties in terms of the flexure dimensions. Concerning the SF cross section, it features an annulus
sector as depicted in Fig. 4, which can be considered as the common section of two concentric circular sectors with different
radii. Let one define ri and ro as the radii of the inner and outer circular sectors respectively. Assuming bs as the subtended angle
of the annulus sector, the cross section area, AS can be simply computed as follows:

AS =
r2

obs

2
− r2

i bs

2
=

(r2
o − r2

i )bs

2
(12)

In addition, a relation between the radius of the centroidal axis, R, and the cross section geometric variables ri, ro, and bs, can be
found resorting to the definition of the first moment of area, SS

k, along the k axis, such that:

SS
k = ASR =

bs/2∫
−bs/2

ro∫
ri

(r cosb)r dr db =
2
3

(r3
o − r3

i ) sinbs/2 ⇒ R = SS
k/AS =

4
3

(r3
o − r3

i ) sinbs/2

(r2
o − r2

i )bs
(13)

having defined r as the radius of the generic circular sector. The area moments of inertia, IS
m and IS

n, with respect to the m and n
axes (see Fig. 4) can then be written as:

IS
m =

bs/2∫
−bs/2

ro∫
ri

(r sinb)2r dr db =
1
8

(r4
o − r4

i )(bs − sinbs) (14)

IS
n =

bs/2∫
−bs/2

ro∫
ri

(r cosb)2r dr db − ASR2 =
1
8

(r4
o − r4

i )(bs + sinbs) − 8
9

(r3
o − r3

i )2sin2(bs/2)

(r2
o − r2

i )bs
(15)

Note that, in Eq. (15), the term ASR2 (the area AS being expressed via Eq. (12)) arises from the use of the parallel axis
theorem [28] when transferring the area moment of inertia from the global k axis to the local n axis.

For what concerns the SF torsional constant, JS, non-circular cross sections tend to warp when subjected to torsional load-
ing, thus loosing their initial in-plane configuration. The process of formulating an analytical expression (the so-called warping
function), which suitably captures this phenomenon, is widely known as the Saint-Venant’s torsion problem [29]. Since no
closed-form solutions for several types of cross sections are available [30], various techniques to express reliable warping func-
tions have been investigated in the past literature. For instance, Prandtl has introduced membrane analogy [31], which has been
proven as a valuable tool for solving the torsion problem for various cross sections (such as rectangular ones). As for the torsional
constant, JS, the exact formulation for annulus sectors is reported in Ref. [32], which proposed a warping function composed
of an infinite series of analytical terms. Nevertheless, the authors of Refs. [25,32] recall the following simplified closed-form
equation, firstly proposed by J. B. Reynolds, which is in close agreement with the original formulation:

JS =
(ro − ri)

12
(to + ti)(t2

o + t2
i ) − VLt4

o − VSt4
i (16)
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where:

VL = 0.10504 − 0.1l + 0.0848l2 − 0.06746l3 + 0.05153l4 (17)

VS = 0.10504 + 0.1l + 0.0848l2 + 0.06746l3 + 0.05153l4

l =
to − ti

ro − ri

The terms to and ti in Eq. (16) are defined as the chord lengths for the outer and inner sectors respectively. By replacing
Eqs. (12), (14), (15) and (16) in Eq. (9), the SF compliance matrix is determined as a function of the hinge geometric parameters
and employed material.

For what concerns the CCBF, it simply features a rectangular shape cross section, whose area, AC, and area moments of inertia,
IC
m and IC

n , can be trivially computed as:

AC = wt IC
m =

1
12

wt3 IC
n =

1
12

tw3 (18)

where, with reference to Fig. 2, w and t are the hinge thickness and width respectively.
As regards the CCBF torsional constant, a comprehensive description of the membrane analogy procedure [31] for rectangular

cross sections can be found in Ref. [33], which also shows that for narrow rectangular sections with large w/t ratio, the following
simplified closed-form equation holds with a resulting error not greater than 4%:

JC = wt3

(
1
3

− 0.21
t
w

(
1 − t4

12w4

))
(19)

By replacing Eqs. (18) and (19) in Eq. (9), the CCBF compliance matrix is determined as a function of the hinge geometric
parameters and employed material.

3. Numerical example and model validation

3.1. Characterization of Spherical Flexures and Finite Element Analysis

The analytical expressions (Eqs. (9)–(11)) for the compliance factors that have been obtained in the previous section are
valid for slender beams (that is, with w∗ = ro−ri

R < h/10 and bs < h/10) and for small deflections about the undeformed
configuration. First, the accuracy of these expressions has been verified through three dimensional (3D) Finite Element Analysis
(FEA) for two different SF geometries with cross-section dimensions respectively well within and very close to the slender-
beam approximation limits. Specifically, the fist SF features ri = 110 mm, ro = 115 mm, bs = p/180, h = p/6 (that is,
w∗ = h/11.77 and bs = h/30); the second SF features ri = 110 mm, ro = 128 mm, bs = 0.135, h = p/2 (that is, w∗ = h/10.4
and bs = h/11.63). Both flexures are made with an Acrylic Plastic with Young’s modulus E = 3000 MPa and Poisson’s ratio
m = 0.33. FEA has been conducted in COMSOL using the Solid Stress–Strain application mode of the Structural Mechanics
Module. The global displacements in the i, j and k directions are the degrees of freedom (dependent variables) in this application
mode. Linear Elastic Material Model accounting large deformations is chosen. The 3D solid model of the hinge is discretized
using the automatic meshing routine available in the software. The resulting meshes for the first and second SFs respectively
consist of 10024 and 20029 tetrahedral elements and 16170 and 29734 nodes. FEA simulations are executed by individually
loading the flexures along the i, j and k axes and by solving for the corresponding free end deflections. Consistent with the small
deflection hypothesis that is at the basis of the analytical model, the magnitude of the loads has been selected so as to limit
flexure maximum deformation to less than 0.66%. The compliance factors are then computed as the ratios between each applied
force or torque and the corresponding hinge free end displacements and rotations. Comparison between analytically and FEA
derived compliance factors is shown in Tables 1 and 2 which show a good match with maximum errors within 2.9% and 8.4%
respectively for the first SF and the second considered SF. The higher error resulting for the second case is expected since this
SF is stockier than the first one.

After FEA validation, the analytical model has then been used to estimate the components of the SF compliance matrix for
various beam lengths obtained via different combinations of centroidal axis radius R and subtended angle h. The different values
of R are obtained by fixing ri (ri = 110 mm) and varying ro from 112 mm to 115 mm. The angle h is chosen in the range of
0.5 rad and 1.5 rad. The other cross section parameter is taken as bs = p/180. The material considered for the hinge is the same
Acrylic Plastic mentioned above. The results are shown in Figs. 8a–8h, which highlight that all the factors increase in absolute
value as the centroidal axis length decreases and the subtended angle increases.

3.2. Quantitative comparison between Spherical Flexures and Circularly Curved-Beam Flexures

In order to evaluate the suitability of the SF to generate nearly spherical free end motions for application in spherical mech-
anisms, its compliance behavior is here compared to that of an equivalent CCBF having identical centroidal axis and subtended



 

F. Parvari Rad, et al. / Mechanism and Machine Theory 101 (2016) 168–180 175

Table 1
Compliance factors for the first slender SF and comparison between analytical and FEA results.

Compliance factors Cx,fx [mN−1] Cx,mz = Chz ,fx [N−1] Cy,fy [mN−1] Cz,fz [mN−1]

Analytic 0.0119 0.1068 2.7402e−4 0.0697
FEA 0.0118 0.1065 2.7793e−4 0.0676
Error (%) 0.8 0.3 1.4 2.9

Compliance factors Chx ,mx [m−1N−1] Cz,mx = Chx ,fz [N−1] Chy ,my [m−1N−1] Chz ,mz [m−1N−1]

Analytic 5.5181 −0.6120 6.2069 0.9603
FEA 5.3606 −0.5939 6.1699 0.9581
Error (%) 2.8 2.9 0.6 0.2

angle, and exhibiting identical rotational compliance for moments applied along directions orthogonal to that of axis k. This last
constraint is imposed by equating, for the two different flexure cross sections, the moment of inertia about m axis and the tor-
sion constant (namely, IS

m = IC
m and JS = JC, where the subscript S and C hold for SF and CCBF cases). This has been done since the

rectangular cross section is fully characterized by only two independent parameters (namely, w and t) and since Chx ,mx and Chy ,my

are the largest compliance factors for the considered circularly curved flexures. For the two SFs with the specific geometries
considered before, the equivalent CCBFs respectively result with w = 5 mm and t = 2 mm, and w = 17 mm and t = 16.4 mm.
The resulting analytical compliance factors are reported in Tables 3 and 4 along with the corresponding values computed via
FEA. Also for these CCBFs, analytical model and FEA results show good agreement, with maximum errors within 2.9% and 4.9%
respectively for the first flexure and the second flexure.

Comparison between Tables 1 and 3, and Tables 2 and 4 highlights that, for the considered hinge dimensions, the considered
SFs outperform the equivalent CCBFs since the following compliance ratios

r1 =
CS

x,fx

CC
x,fx

=
CS

y,fy

CC
y,fy

=
ACIC

n
(
ASR2 + IS

n
)

ASIS
n

(
ACR2 + IC

n

)
r2 =

CS
x,mz

CC
x,mz

=
CS
hz ,fx

CC
hz ,fx

=
CS
hz ,mz

CC
hz ,mz

=
IS
n

IC
n

(20)

are slightly lower than one, meaning that SFs are less prone than CCBFs to undergo parasitic motions (namely, free end motions
that are not spherical). A more comprehensive comparison between SFs and CCBFs should verify the value of these ratios over a
rather wide range of choices for flexure length and cross section dimensions.

This is accomplished in Figs. 9a–9f, each reporting for a different value of the flexure subtended angle, the contour plot of
the largest value of these ratios (r = max(r1, r2)) as a function of the dimensionless width w∗ and angular span bs of the SF cross
section. In particular, h = 30◦, 40◦, 50◦, 60◦, 75◦, and 90◦ is respectively considered in Figs. 9a–9f. In each figure, the considered
ranges for w∗ and bs are chosen so as to make the resulting flexure a slender one (that is, with w∗ < h/10 and bs < h/10) and
with Im lower than In (that is Chz ,mz lower than Chx ,mx and Chy ,my ). As shown, for all the considered cross sections, the compliance
ratios are always lower than one, which means that the SF always outperforms the CCBF in terms of lower parasitic motions. In
particular, irrespective of the value chosen for the angle h, Figs. 9a–9f highlight that several suitable combinations of w∗ and bs
always exist which make the SF 15% stiffer against motions that are not spherical than the equivalent CCBF featuring identical

Table 2
Compliance factors for the second slender SF and comparison between analytical and FEA results.

Compliance factors Cx,fx [mN−1] Cx,mz = Chz ,fx [N−1] Cy,fy [mN−1] Cz,fz [mN−1]

Analytic 9.3269e−5 8.5970e−4 2.0709e−5 2.1667e−4
FEA 9.2310e−5 8.5135e−4 2.0798e−5 1.9997e−4
Error (%) 1.1 1 0.4 7.7

Compliance factors Chx ,mx [m−1N−1] Cz,mx = Chx ,fz [N−1] Chy ,my [m−1N−1] Chz ,mz [m−1N−1]

Analytic 0.0143 −0.0016 0.0109 0.0080
FEA 0.0131 −0.0015 0.0104 0.0074
Error (%) 8.4 6.1 4.9 7.7
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Fig. 8. Compliance factors in terms of R and h.

primary rotational compliances. This result can be of high importance for slender flexures that need to be designed to provide
very precise motions.

3.3. Comparison between non-slender Spherical and Circularly Curved-Beam Flexures

The results reported in Figs. 9a–9f have been computed using the analytical models of SF and CCBF compliances which
are only valid within the slender beam approximation limit (that is, w∗ < h/10 and bs < h/10 for the SF, and w/R < h/10
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Table 3
Compliance factors for the first slender CCBF and comparison between analytical and FEA results.

Compliance factors Cx,fx [mN−1] Cx,mz = Chz ,fx [N−1] Cy,fy [mN−1] Cz,fz [mN−1]

Analytic 0.0120 0.1075 2.7587e−4 0.0697
FEA 0.0119 0.1072 2.7964e−4 0.0676
Error (%) 0.7 0.3 1.4 2.9

Compliance factors Chx ,mx [m−1N−1] Cz,mx = Chx ,fz [N−1] Chy ,my [m−1N−1] Chz ,mz [m−1N−1]

Analytic 5.5181 −0.6120 6.2069 0.9668
FEA 5.3646 −0.6942 6.1643 0.9646
Error (%) 2.8 2.9 0.7 0.2

and t/R < h/10 for the CCBF). To assess the validity of the analytical model as well as the advantages of SFs over CCBFs also
outside this range, two stocky flexure cases are considered in this section. The first assumes a thick and wide SF characterized
by ri = 110 mm, ro = 164 mm, bs = 0.314, h = p/2 (that is, with w∗ = h/4 and bs = h/5). The equivalent CCBF is accordingly
characterized by w = 50.9 mm and t = 44.4 mm. The analytical and FEA calculated compliance factors for the two flexures are
shown in Tables 5 and 6. The maximum errors (9.2% for the SF and 9.8% for the equivalent CCBF) still show a close agreement
between the Analytical method and FEA. In addition, the largest value, r = 0.88, of the FEA evaluated compliance ratios confirms
the SF as a better alternative than the equivalent CCBF for the generation of spherical motions. The second case assumes a
thin but very wide SF characterized by ri = 40 mm, ro = 70 mm, bs = p/40, h = p/4 (that is, with w∗ = h/1.475 and
bs = h/10). The equivalent CCBF is accordingly characterized by w = 25.4 mm and t = 4.7 mm. The analytical and FEA
calculated compliance factors for these two flexures are shown in Tables 7 and 8. The very large maximum errors (in the order
of 90% for both SF and equivalent CCBF) indicate that the analytical model is not suited to evaluate the compliance factors of
these last highly non-slender beam geometries. Nonetheless, by looking at Table 9, which reports the ratios between all the FEA
calculated compliance factors of SF to those of the equivalent CCBF, the following can be said: 1) despite highly inaccurate in
value, the analytical model can still be used to identify the geometry of the equivalent CCBF that features primary compliances
identical to those of the corresponding SF; 2) considering the performance indices r1 and r2 defined in Eq. (20), the considered
large-width SF outperforms the equivalent CCBF by more than 30%. This last result makes the SF concept even more attractive
for many real applications that requires non-slender flexures with large width-to-length ratio (even larger than one), which is
usually sought to increase flexure rigidity against torques acting along the directions that are tangent to the flexure centroidal
axis.

4. Conclusions

The closed-form compliance equations for slender Spherical Flexures (SFs) undergoing small deflections as a function of both
hinge dimensions and employed material have been presented and validated via three dimensional Finite Element Analysis.
The compliance model accounts for a suitable closed-form equation, derived from the past literature, and includes the warping
phenomenon of non-circular cross sections subjected to torsional loading.

Based on the compliance model, SFs have been fully characterized and the influence of flexure geometric parameters on
compliance ratios was analyzed. In addition, SFs have been compared to CCBFs with equivalent primary compliance in terms
of their ability to produce free end deflections that resemble as close as possible a spherical motion. Results have shown that
SFs always outperform CCBFs in generating lower parasitic motions, which makes them better suited for the implementation of
spherical mechanisms with superior motion accuracy.

Table 4
Compliance factors for the second slender CCBF and comparison between analytical and FEA results.

Compliance factors Cx,fx [mN−1] Cx,mz = Chz ,fx [N−1] Cy,fy [mN−1] Cz,fz [mN−1]

Analytic 1.0878e−4 0.0010 2.4152e−5 2.1667e−4
FEA 1.0810e−4 9.9705e−4 2.4287e−5 2.1501e−4
Error (%) 0.6 0.6 0.6 0.8

Compliance factors Chx ,mx [m−1N−1] Cz,mx = Chx ,fz [N−1] Chy ,my [m−1N−1] Chz ,mz [m−1N−1]

Analytic 0.0143 −0.0016 0.0109 0.0093
FEA 0.0140 −0.0016 0.0104 0.0090
Error (%) 2.1 2.3 4.9 3.7
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Fig. 9. Contour plots of the factor r = max(r1, r2) for different values of h.

Table 5
Compliance factors for the first non-slender SF and comparison between analytical and FEA results.

Compliance factors Cx,fx [mN−1] Cx,mz = Chz ,fx [N−1] Cy,fy [mN−1] Cz,fz [mN−1]

Analytic 2.0689e−6 1.6267e−5 4.5936e−7 5.1913e−6
FEA 1.9615e−6 1.5514e−5 5.0150e−7 4.7857e−6
Error (%) 5.2 4.6 9.2 7.8

Compliance factors Chx ,mx [m−1N−1] Cz,mx = Chx ,fz [N−1] Chy ,my [m−1N−1] Chz ,mz [m−1N−1]

Analytic 2.5786e−4 3.3818e−5 2.0905e−4 1.3074e−4
FEA 2.4030e−4 −3.1034e−5 2.0650e−4 1.2310e−4
Error (%) 6.8 8.2 1.2 5.8
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Table 6
Compliance factors for the first non-slender CCBF and comparison between analytical and FEA results.

Compliance factors Cx,fx [mN−1] Cx,mz = Chz ,fx [N−1] Cy,fy [mN−1] Cz,fz [mN−1]

Analytic 2.3420e−6 1.8436e−5 5.1999e−7 5.1913e−6
FEA 2.2787e−6 1.8037e−5 5.7124e−7 5.0158e−6
Error (%) 2.7 2.2 9.8 3.4

Compliance factors Chx ,mx [m−1N−1] Cz,mx = Chx ,fz [N−1] Chy ,my [m−1N−1] Chz ,mz [m−1N−1]

Analytic 2.5786e−4 −3.3818e−5 2.0905e−4 1.4816e−4
FEA 2.4938e−4 −3.2591e−5 2.0218e−4 1.4310e−4
Error (%) 3.3 3.6 3.3 3.4

Table 7
Compliance factors for the second non-slender SF and comparison between analytical and FEA results.

Compliance factors Cx,fx [mN−1] Cx,mz = Chz ,fx [N−1] Cy,fy [mN−1] Cz,fz [mN−1]

Analytic 4.8062e−6 8.5509e−5 2.5212e−7 1.6284e−4
FEA 4.3765e−6 8.0754e−5 5.0150e−7 1.0761e−4
Error (%) 8.9 5.6 98.9 33.9

Compliance factors Chx ,mx [m−1N−1] Cz,mx = Chx ,fz [N−1] Chy ,my [m−1N−1] Chz ,mz [m−1N−1]

Analytic 0.0521 −0.0028 0.0673 0.0016
FEA 0.0354 −0.0019 0.0650 0.0015
Error (%) 32 32.5 3.5 3.7

Table 8
Compliance factors for the second non-slender CCBF and comparison between analytical and FEA results.

Compliance factors Cx,fx [mN−1] Cx,mz = Chz ,fx [N−1] Cy,fy [mN−1] Cz,fz [mN−1]

Analytic 7.1139e−6 1.2733e−4 3.7317e−7 1.6284e−4
FEA 6.8117e−6 1.2519e−4 7.1981e−7 1.1151e−4
Error (%) 4.2 1.7 92.9 31.5

Compliance factors Chx ,mx [m−1N−1] Cz,mx = Chx ,fz [N−1] Chy ,my [m−1N−1] Chz ,mz [m−1N−1]

Analytic 0.0521 −0.0028 0.0673 0.0023
FEA 0.0391 −0.0020 0.0622 0.0023
Error (%) 25 30 7.6 0.8

Table 9
Ratio between the SF and equivalent CCBF compliance factors via FEA.

Compliance factors Cx,fx [mN−1] Cx,mz = Chz ,fx [N−1] Cy,fy [mN−1] Cz,fz [mN−1]

Ratio 0.6425 0.6451 0.6967 0.9650

Compliance factors Chx ,mx [m−1N−1] Cz,mx = Chx ,fz [N−1] Chy ,my [m−1N−1] Chz ,mz [m−1N−1]

Ratio 0.9054 0.9500 1.0450 0.6522
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