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Abstract The selection of conceptual design alternatives
is crucial in product development. This is due both to the
fact that an iterative process is required to solve the prob-
lem and that communication among design team members
should be optimized. In addition, several design constraints
need to be respected. Although the literature offers sev-
eral alternative selection methods, to date, only very few
are currently being used in industry. A comparison of the
various approaches would improve the knowledge transfer
between design research and practice, helping practitioners
to approach these decision support tools more effectively.
This paper proposes a structured comparison of two deci-
sion support methods, namely the Fuzzy-Analytic Hierarchy
Process and Pugh’s Controlled Convergence. From the litera-
ture debate regarding selection methods, four relevant criteria
are identified: computational effort, suitability for the early
design stages, suitability for group decision making, and ease
of application. Finally a sensitivity analysis is proposed to
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test the robustness of each method. An industrial case study
is described regarding an innovative and low-cost solution
to increase the duration of heel tips in women’s shoes. The
selection of conceptual design alternatives of the heel tip
presents complex challenges because of the extremely diffi-
cult geometric constraints and demanding design criteria.

Keywords Engineering design methods · Concept
selection · Fuzzy-analytic hierarchy process · Pugh’s
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1 Introduction

Early product introduction and cost reductions in the manu-
facturing process are fundamental for a successful industrial
product. In the literature it has been reported that 75 % of
the cost of a product is due to the design phase [1] and 80 %
to the conceptual design process [1,2]. Moreover, a miscon-
ceived conceptual design can never be compensated for by a
later better detailed design [3]. Thus, money and time should
be invested wisely in the early design stages and, in particu-
lar in the conceptual design phase. Tailor-made methods and
CAD-based tools are often developed by engineers to reduce
errors and time wasting in these delicate phases [4,5].

The concept design process is made of steps, characterized
by strict coordination and collaboration [6]. Thus, the cus-
tomer’s needs have to be evaluated first, followed by the target
specifications and the product’s particular requirements.

Concept selection is a complex task for engineering
designers as it can be considered as the most critical decision-
making step in the product development process [7]. During
this phase, erroneous solutions need to be minimized, which
means that several facets of the problem have to be consid-
ered concurrently.
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Efficient design methods and suitable decision-making
techniques thus both contribute to a successful final prod-
uct.

Multicriteria decision-making methods are effective tools
for selecting preliminary designs throughout the product
development process. According to Vincke [8], multicrite-
ria decision aids provide the decision maker with problem-
solving tools, in the case of multiple and conflicting criteria.

Montagna [9], for example, suggests using Knowledge
Management methods for the collaborative aspects of the
conceptual design phase, Systematic methods (such as
Pugh’s Controlled Convergence-PuCC) for the concept
selection phase, and Multicriteria Decision Making meth-
ods (such as the Analytic Hierarchy Process-AHP) for the
evaluation of concept design alternatives.

Sharing these premises, Kuppuraju et al. [10] define the
engineering design process as a problem of selection or the
improvement of an alternative. They describe the selection
process in two phases. The first consists in generating feasi-
ble concepts and the second involves the selection-Decision
Support Problem (DSP).

This is crucial for designers, because they have to choose
the alternatives that will be developed in a further detailed
stage.

However, as highlighted by Salonen and Perttula [11],
little use of concept selection methods is made. Yang [12]
reports that, out of 106 experienced engineers, only a small
fraction (15 %) employ concept selection methods and even
less (13 % of the 15 %) are satisfied with the results.

There may be several reasons for such diffidence. One lies
in the fact that industrial experts tend to rely on their expe-
rience and know-how. This is partially due to the fact that
although there are several selection applications in the litera-
ture, few studies focus on comparisons between the methods.

This work provides a structured comparison between
two well-known design selection methods, highlighting the
advantages and disadvantages of the methods. In this way the
paper aims to contribute to the knowledge transfer between
design research and industrial application.

The comparison is made between the following differ-
ent representative approaches: the Fuzzy Analytic Hierar-
chy Process (F-AHP) and Pugh’s Controlled Convergence
(PuCC).

F-AHP, or AHP in Saaty’s original version [13], is struc-
tured analytically. On the other hand, PuCC, is characterized
by a more discursive framework, in which team discussions
are required in order to provide a unique group preference.

A list of common criteria were proposed for the compar-
ison and a sensitivity analysis was performed to ensure the
robustness of each application. The analysis was also carried
out to assess the dependence of the results on small changes
in the preference weights for the criteria and/or on the rating
values of the alternatives.

A case study on the conceptual design of heel tips for
women’s shoes is proposed, to better illustrate and compare
the two selection methods.

1.1 Related research

1.1.1 F-AHP in concept selection

The complexity characterizing F-AHP and other decision
making methods may be one of the reasons why they are
not very common in industry. In fact, AHP-based methods
involve several mathematical calculations, increasing with
the number of criteria and alternatives.

This is clear from Buyukozkan et al.’s table [14] (proposed
again in [15]), in which the advantages and the drawbacks of
the application of F-AHP-based methods are described. The
most cited advantage of this selection method is its ability to
focus on the perspective of the decision makers. In addition,
the F-AHP process is suitable for software implementation.

The F-AHP phases are however more complex than the
three iterations traced by the PuCC’s matrices. This aspect
was discussed by Stuart Pugh, who argued that, during the
early stages of the design process, such a high level of pre-
cision is not required [16].

The Fuzzy version of the AHP method has nevertheless
been used to overcome some limitations observed in the
application of Saaty’s original version. These weaknesses
have already been described in the literature. Ayag [17] for
example, remarked that AHP is mainly used for crisp decision
making. In fact, it does not consider the uncertainty associ-
ated with the loss of information, due to the translation of
the verbal judgments of the decision makers into crisp num-
bers. Moreover, the decision maker’s requirements may con-
tain ambiguity and the human judgment on quality attributes
may be imprecise. Thus, the crisp aspect of the conventional
AHP seems inappropriate in depicting the uncertain nature
of this decision phase. A Fuzzy-AHP selection approach is
considered as a remedy to these drawbacks.

Several examples in the literature regard the use of AHP
techniques to rank alternatives and solve product develop-
ment sub-problems. The most commonly described fields of
application are: product family evaluation, selection of man-
ufacturing technologies, and robot or equipment selection for
a specific industrial purposes.

AHP is often combined with other intelligent techniques.
Combined with the fuzzy sets theory, AHP is used to consider
uncertainties during the early stages of design and deal with
the variables in verbal judgments. Fuzzy interfaces to trans-
form the linguistic variables into fuzzy numbers are often
used to avoid the uncertainty brought by numerical voting.

Liu et al. [18] introduced a fuzzy decision making method
to select the optimum design, using conjoint analysis to con-
sider both customer preferences and engineering constraints.
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In [19] the authors propose a Fuzzy-Interface/AHP-based
software application for the selection problem, with a Fuzzy
conversion of input/output linguistic variables and a sub-
criteria dependence approach.

Another fuzzy selection procedure is proposed by Liang
and Wang [20], who, after classifying the product attributes
into subjective and objective ones, translate the verbal judg-
ments of decision makers when weighing up attributes
against alternatives, into fuzzy variables, in order to avoid
problem constraints.

1.1.2 PuCC in concept selection

In [16], pairwise comparison strategies and Pugh’s method
in particular, were tackled, by analysing [21], to highlighting
the advantages and disadvantages of the pairwise comparison
methodology. According to these authors, pairwise-based
techniques may introduce errors in the decision-making
process and, consequently, lead to erroneous conclusions.
Moreover, important information regarding the intensity of
comparisons may be lost, thus reducing the comparison to a
simple preference estimation. The same authors describe the
clarifications made in [22], regarding the capabilities that a
concept evaluation method should have.

One interesting attempt to enhance Pugh’s Controlled
Convergence method consists in adding an evaluation of the
probability of the alternatives satisfying the target require-
ments. Frey et al. [23] consider this approach appropriate for
cases where there are few alternatives with well-known char-
acteristics, without any possibilities of generating new alter-
natives. The authors therefore propose a model-based eval-
uation for quantitatively performing the PuCC method. In
fact, while in the PuCC method, there is no quantitative tech-
nique for eliminating concepts, the authors propose a direct
elimination of the dominated concepts. They thus simulate
the elimination of concepts, in order to understand how the
strength of a datum concept influences the convergence of the
set of alternatives. The simulation is carried out by means of
four cases, known in the literature, in three of which only one
datum concept is considered. The analysis revealed that the
selection of a strong datum concept substantially reduces the
alternatives at the first run (25−70 % reduction in the number
of alternatives). If the datum concept is not so strong on the
other hand, it results in a lack of convergence at the first run.

Frey et al.’s experiment also showed that, due to the itera-
tive nature of the process, a single run almost never leads to
one unique solution.

Several applications deal with the use of the PuCC method
in product concept selection. For instance, in [24], the design
of an improved impulse turbine is proposed, combining the
Pugh concept analysis and 3D CAD design.

Iqbal et al. [25] use Pugh’s Controlled Convergence
method to generate a wide variety of design concepts of

a wing for a Medium Altitude Long Endurance (MALE)
Unmanned Aerial Vehicle within a CAD environment, apply-
ing and iterating the process until the best concept is selected.

Wang [26] extends Pugh’s concept selection method with
a fuzzy set theory, in order to provide a measure of the quality
of a chosen concept, by supporting designers with numerical
information.

1.2 Comparison strategy

1.2.1 Comparison criteria

The comparison between the F-AHP and PuCC methods was
carried out by selecting the four criteria outlined below which
have been derived from the literature.

1. Computational effort required.

The computational effort is a measure of the time needed
to introduce data and implement the method. It is widely
considered that decision support problems are not common in
engineering design practice [11,27–30]. Thus, an indication
of the computing time and effort could be interesting in order
to encourage the use of such techniques in engineering design
practice.

2. Suitability for the early design phases.

Early design phases and, in particular, the conceptual phase,
are riddled with uncertainties and lack of information. The
fact that analytical techniques may be unsuitable for the early
design phases has been reported in the literature [16].

3. Suitability for group decision making.

The suitability for group decision making reveals how the
method takes into account the preferences of an individual
decision maker. This is a measure of capability in decision-
making, among several members. This is a fundamental
aspect in tackling engineering design problems, where dis-
cussion between members is paramount for a suitable trade-
off regarding product requirements.

4. Ease of application

This criterion is also fundamental in the choice of a deci-
sion support method. In fact, in our experience in the indus-
trial field, one of the main reasons for rejecting a method is
because it is difficult to apply. Users are likely to prefer a
decision support method that only has few instructions.

On the other hand, more analytically complex methods,
such as F-AHP or TOPSIS, are usually more suitable for soft-
ware implementation, due to their “analytical” nature. There-
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fore, if a simple interface for simplifying data input could
be built and proposed to the user, some apparently complex
methods would probably be more attractive for practitioners
than “less analytic” ones.

In this paper, we tackle this apparent contradiction, to clar-
ify both the strengths and limitations of the two chosen meth-
ods.

1.2.2 Work flow of selection methods

F-AHP The F-AHP method originated from Saaty’s AHP
[13] and, like the latter, is based on a hierarchical structure.
On the top level is the main goal to be attained; on the second
level are the given criteria, both quantitative and qualitative,
and any other sub-criteria are on the levels below.

The alternatives are located at the bottom of the hierarchy.
The method is based on pairwise comparisons, in the sense

that the criteria are first compared pairwise with respect to the
main goal so as to put the criteria in order of priority. Thus,
the alternatives are also pairwise compared, with respect to
the criteria. The aim here is to produce a classification, which
reflects the degree of importance given to each criterion, with
respect to the main goal. Finally, a concordance index offers
a measure of the consistency and reliability of the results.

In F-AHP, the linguistic variables used for the verbal judg-
ments are translated into Fuzzy numbers. This approach has
been reported in the literature (e.g. [18,19]). A numerical
9-point scale, such as the one proposed by Saaty [13], is
simple and suitable for crisp judgments, however it does not
properly describe the uncertainty of translating a human per-
ception into a number [15].

For the case study proposed, the linguistic assessments of
the decision makers are described using Trapezoidal Fuzzy
Numbers. As remarked in [19], a Fuzzy Number is described
by its membership function μA(x) with the following char-
acteristics:

• μA(x) = 0,∀ x ∈ (−∞, α] ∪ [δ,∞);
• μA(x) increases monotonically in [α, β] and decreases in

[γ, δ]
• μA(x) = 1,∀ x ∈ [β, γ ];

or it may also take these values: α = −∞ or α = β or
β = γ or δ = ∞. The fuzzy number is described by a
4-tuple [α, β, γ, δ], with straight line segments for μA(x) in
[α, β] and [γ, δ].

From a mathematical viewpoint, a Trapezoidal Fuzzy
Number has a membership function: μA : R → [0, 1] as
in Eq. (1) and depicted in Fig. 1.

μA(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x − a)/(b − a) for a ≤ x ≤ b
1 for b ≤ x ≤ c
(x − c)/(d − c) for c ≤ x ≤ d
0 otherwise

(1)
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Fig. 1 Trapezoidal membership function

The F-AHP method, as described in Fig. 2, is based on
the following steps. First, the decision makers express their
preference by pairwise comparing the given criteria: these
linguistic assessments are handled using fuzzy numbers.

Next the criteria are put in order of priority and a matrix
with the values of the mean aggregated preference weights
is thus provided.

The suitability of each alternative is also evaluated, with
respect to the criteria, by means of linguistic variables, treated
as Trapezoidal Fuzzy Numbers.

Finally, consequent fuzzy score evaluation and a defuzzi-
fication procedure is carried out to generate a ranking vector
of the alternatives. A software tool based on the algorith-
mic form of the F-AHP process was implemented in order to
simplify usability for industrial purposes.

The mathematical procedure that enables the F-AHP to
evaluate the design alternatives is described below.

In the first step the decision makers provide their prefer-
ences for the criteria, using verbal judgments taken from the
set “preference”. The weights are allocated for each crite-
rion j, (j = 1, …, i), by the rth decision maker (r = 1, …, q).
In this way, a matrix of (i × q) elements is produced, as in
Eq. (2).

(w jr ) =

⎛

⎜
⎜
⎝

w11 w12 . . . . . . w1q

. . . . . .

. . .

wi1 . . . . . . . . . wiq

⎞

⎟
⎟
⎠ (2)

Each weight w jr is a four-element vector, representing the
trapezoidal number w jr = (a jr , b jr , c jr , d jr ).

The linguistic values provided by the decision makers to
evaluate the suitability of each alternative in relation to the
criteria, are translated into the corresponding numerical val-
ues, in a (i ×q×4) matrix (as each element is a four-element-
vector).

Hence, the Mean Operator is used to find the mean aggre-
gated preference weight W j in Eq. (3), thus generating a
(i × 4)-sized W j matrix.
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Fig. 2 Fuzzy-AHP procedure

W j =
∑q

r=1 w jr

q

=
(∑q

r=1 a jr

q
,

∑q
r=1 b jr

q
,

∑q
r=1 c jr

q
,

∑q
r=1 d jr

q

)

(3)

Therefore, the q decision makers are again required to pro-
vide judgments on the suitability of each alternative, with
respect to the criteria, using the linguistic variables from the
Term Set of “suitability”.

If Sjmr = (ajmr, bjmr, cjmr, djmr) is defined as the suit-
ability assigned to the mth alternative (m = 1, 2, . . . , p),

evaluated against the jth criterion ( j = 1, 2, . . . , i), by the
rth decision maker (r = 1, 2, . . . , q), the suitability is given
by i matrices of size (p × q).

The suitability indices (Sjm) are then evaluated for each
criterion, as in Eq. (4)

S jm =
∑q

r=1 S jmr

q
(4)

The matrices of the suitability indices can be collected in a
single matrix that has the form of Eq. (5) with i criteria and
p alternatives.

Sindices_m, j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1 j1 S1 j2 S1 j3 S1 j4
...

...
...

...

Smj1 Smj2 Smj3 Smj4
...

...
...

...

Spj1 Spj2 Spj3 Spj4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

In order to proceed with the final ranking, a Fuzzy Score �

is calculated as in Eq. (6), for each alternative m = 1, . . . , p.

�m =
∑i

j=1 (S jm ⊗ W j )

i

= (S1m ⊗W1)⊕. . . ⊕ (S jm ⊗ W j ) ⊕ . . . ⊕ (Sim ⊗ Wi )

i
(6)
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The matrix corresponding to the evaluation of the fuzzy
scores, for all the alternatives, is shown in Eq. (7).

�_tot ≡

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

�1

�2

. . .

�m

. . .

�p

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)

A final defuzzification is performed, in which the Fuzzy
Score of each alternative is changed into an equivalent crisp
value. This is done using the Weighted Average Method
[as shown in Eq. (8) for each alternative] [20]. Each of
the base variables x is weighted by its respective maxi-
mum membership value μm(x) for any m Fuzzy Number
(or Variable).

�mmean =
∑

(μm(x) × x)
∑

μm(x)
(8)

The defuzzified values are thus collected in a vector, in which
each row corresponds to the mean value of the fuzzy score
of each alternative. This vector provides a classification of
alternatives, in the sense that the highest score corresponds
to the best alternative.

PuCC There are two phases in Pugh’s Controlled Conver-
gence method: screening and scoring. Ulrich and Eppinger
[6] characterize these two phases using the “screening” and
the “scoring” matrices.

In the first phase no vote is given, as alternatives are
screened in relation to the criteria. The alternatives are sim-
ply defined as being “better” (+), “equal” (0) or “worse” (−),
than an alternative taken as a comparison, called “concept
datum”.

The second phase regards the selection decision support
problem, (Decision Support Problem-DSP [10]), in which,
the relative importance of the criteria is evaluated and the
feasible alternatives are ranked for each criterion.

As depicted in Fig. 3, this phase includes the ranking of the
criteria and the rating of the alternatives, with respect to the
criteria. The alternatives are ranked using a voting procedure
and taking account of the priority of the criteria.

The process is iterative: at each run, the alternatives with
the minimum score are eliminated. Several iterations can be
performed, each with a different datum concept. In the second
run, the best-scoring alternative of the previous run is selected
as the new concept datum.

In the scoring phase, first the criteria are pairwise com-
pared, so that one point is awarded to the preferred alternative
and none to the worst. Half a point indicates an equal pref-
erence between the criteria.

A total net rating is thus calculated for each criterion and
the corresponding normalized values identify the elements
of the importance vector—“priority vector”—for the criteria.
Each element of the priority vector is defined as the ratio of
the rating of each criterion and the sum of the total ratings of
the criteria.

The alternatives selected from previous iterations, desig-
nated as candidates for the selection process, are thus rated
against the given criteria. A maximum score is defined for
each alternative.

The normalized values Rij of the alternative ratings Aij are
calculated as the ratio of the alternative rating and the total
sum of the maximum possible score of the corresponding
alternative [Eq. (9)].

Ri j = Ai j

Ai j Max
(9)

Post solution analysis: Sensitivity Analysis

Identification of the
initial datum 

Criteria ranking  Alternatives 
rating 

Alternatives ranking  

End
choose solution 

for detailed design step

NO
satisfied with 
the results?

YESYES

NO

Merit Functions evaluation

Set of Criteria 
Set of 

Alternatives

Start

Sensitivity to changes 
in the relative 

importance of criteria

Sensitivity to changes 
in the alternative 

ratings

satisfied with 
the results?

Databases from preliminary analysis

Fig. 3 The DSP for the PuCC method and the post-solution sensitivity analysis
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The merit functions M Fi , which are used to rank the alter-
natives, are calculated for the i-th alternative using the linear
additive form of Eq. (10). In fact this mathematical form is
straightforward and is the most commonly used [10].

M Fi =
n∑

j=1

I j · Ri j i = 1, . . . , m (10)

where Ri j is the normalized rating for alternative i with
respect to criterion j [Eq. (9)].

1.2.3 Sensitivity analysis

To test the robustness and stability of the solution candidates,
a post-solution sensitivity analysis is performed by changing
either the attribute weights or altering the alternative ratings.

This analysis can be performed for each method inde-
pendently and not necessarily in a comparable way. Differ-
ent ways of evaluating the weights of the criteria in the two
selection methods would lead to different approaches for the
sensitivity analyses. In fact, while in the F-AHP, verbal judg-
ments are provided for the weights, in the PuCC method,
numerical votes are allocated to them.

Therefore, for the sensitivity analyses we considered two
quite different approaches [31] for F-AHP and [10] for PuCC.
In the first approach, the verbal judgments are forced to be all
equal to one judgment at a time. In the second, small changes
are made to the numerical votes allocated to the criteria.

2 Case study: selection of conceptual design of heel tips
for women’s shoes

The case study used to enable us to compare the F-AHP and
PuCC methods was provided by an Italian heel manufacturer.
The problem consisted in finding an innovative and low-cost
method to increase the duration of heel tips in women’s shoes.

This issue involves multiple constraints and thus, can be
treated as an MCDM (Multi Criteria Decision Making) prob-
lem. The overall objective of the research is to increase the
life of the heel-tip for women’s shoes, which is subject to
wear due to contact with the ground. The polymeric layer of
the heel-tip tends to wear prematurely. This problem gener-
ally occurs within a few days of continual use in high heels
shoes with a reduced cross-section.

When the polymer wears down this exposes the head of
the metal pin which also generates a noise during walking,
due to the contact with the ground. This is perceived as a
problem by the customers.

Specifications for developing new solutions for heel to
heel-tip connection, mandate that the original shape and over-
all dimensions be preserved.

There are strict constraints regarding the interface between
the innovative heel tip and the heel structure. In fact, an elastic

Input data

Customer’s needs

Company’s constraints

Decision makers’ 
experience and skills

Set of 
alternatives

concept 
generation

Technical  
product 

requirements

Loads modelization

Set of criteria

QFD

Constraints for the problem 

Fig. 4 Generation of the sets of criteria and alternatives, for the mul-
ticriteria decision making problem

metal pin is inserted into the plastic heel for reinforcement.
The internal dimension of the metallic pin is less than 3 mm.
The pin of heel tips currently on the market is forced into the
pin hole.

In addition, the heel to heel-tip connection needs to fit
the whole range of high heel women’s shoes. The conflicting
constraints of the compact size and shape, together with stiff-
ness values need to be respected concurrently, which makes
finding a solution all the more difficult. Experts from sev-
eral disciplines tackled the problem since the early stages of
the design process. In fact, at this initial design stage, sev-
eral uncertainties need to be considered due to the lack of
information regarding the relevant data.

This is in agreement with other research [32].
The concept selection followed in our specific experience,

covered the steps shown in Fig. 4: first the input data need to
be considered for the problem. Decision makers have to pro-
vide their experience and know how in order to identify the
most relevant requirements for the product. These require-
ments form part of the product criteria, while other criteria
include the constraints provided by the manufacturer of the
heels, and the customer needs.

Firstly, a meeting is held between three decision makers—
the manufacturer, the engineering designer, and a market
expert in heel manufacturing together with a few customers.
Working together they list the product specifications,.

As often occurs in multicriteria engineering, conflicting
constraints need to be handled and considered concurrently.
In fact, while the manufacturer prioritized the manufactura-
bility and the reliability of the mechanical assembly, the
expert in heel production stressed the importance of innova-
tion. The engineering designer focused on increasing product
stiffness by modifying the material for the heel-tip and pin,
with a consequent change in the technological production
process.

A Quality Function Deployment was then applied to trans-
form the needs into technical requirements and specifica-
tions.
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Fig. 5 Commercial heel-tip used in the case study

Two different approaches were proposed to solve the
design problem: to increase the duration of the material or to
increase the height of the heel tip, using an innovative design
for the metal pin.

Thus starting from the international standards regarding
the stresses acting on the foot during walking, a preliminary
mathematical model was built and validated by FEM analy-
sis, for a rough calculation of the loads and constraints acting
on the commercial heel-tip shown in Fig. 5.

2.1 The decision-making experiment

The F-AHP method was applied first and the decision mak-
ers were required to vote separately without sharing their
choices. Precautions were taken to avoid biases due to the
repetition of the same experiment with a different tool. First,
the F-AHP method was applied before the PuCC as previous
discussions between team members preceding Pugh’s deci-
sion process, could have affected the results. Secondly, team
members were not allowed to communicate with each other
before the completion of the F-AHP voting phase.

2.1.1 Assumptions

The first condition for the problem is that decision-makers do
not change their minds between one experiment and another.
This condition is very rigid, because no control can be pro-
vided for rationalizing changes in preference within a certain
time interval.

This is most evident in group discussions, in which opin-
ions may be influenced by other members and thus change
considerably during the decision-making process. This issue
was tackled in an experiment by Ji et al. [33] in which a team
discussion was divided into intervals, and the designer’s pref-
erences were assumed to remain unchanged. In addition, a
distinction was made between the formal and informal aggre-
gation of preferences. In fact, a consensus for the entire group
is unlikely to be reached in a formal way. More informal ways

Table 1 Selected criteria for the analysis

Criteria

C1 Reduction of the pin height (add volume for wear material)

C2 Aesthetics

C3 Assembly reliability

C4 Manufacturability

C5 Development cost

C6 Minimal modification to the heel assembly

on the other hand, such as voting or consensus building, are
thought to be effective for assigning group preferences.

In our case study, however, we assumed that the decision
makers do not change their minds regarding their preferences
from one session to the other. This hypothesis is supported by
the fact that similar final results emerge from the application
of the two methods.

Another important consideration is the fact that the two
approaches are based on different voting rules, which could
affect the final results. In fact, while in PuCC a team dis-
cussion leads to total consensus, in F-AHP each decision
maker expresses their own judgment irrespective of the oth-
ers. Thus, members are not influenced by each other in the
F-AHP voting procedure and thus bias is avoided.

After the definition of the case study, the frameworks of
F-AHP and PuCC were developed, implemented in spread-
sheets and then applied.

The criteria were listed, starting with the requirements
highlighted by the experts. Six criteria were highlighted, as
reported in Table 1.

The first criterion (C1) regards the possibility of reducing
the height of the heel-tip pin, in order to enable other poly-
meric material to be used. C2 (aesthetics) is critical in terms
of a successful market introduction. C3 (assembly reliabil-
ity) can be measured by the area involved in the gripping
of the polymeric material by the heal of the heel-tip pin. C4
(manufacturability) measures the ease of implementing the
technology. C5 (development cost) is related to the cost of
the manufacturing process. To be more precise, the analysis
of costs should follow the decision-making process, at a later
stage. In this context, however, the cost was considered as a
criterion in itself, to simplify the comparison between the
selection methods.

The last criterion (C6) is the minimal modification made to
the heel assembly, which takes into account the geometrical
constraints of the assembly.

Following these constraints, six innovative concept designs
were thus proposed (Fig. 6). To better understand the com-
plexity of the problem and the variety of solutions provided,
we now describe the main characteristics of the heel assem-
bly and the alternatives. The heel-tip device and the plastic
heel are assembled by press fitting the metallic pin of the heel
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A1 

A4 A5

A2 A3

A6 

Fig. 6 Innovative conceptual design alternatives, proposed for the heel-tip

Fig. 7 Membership functions for “Preference” and “Suitability”

tip to the spring pin. The spring pin and the plastic heel are
co-injected.

All the alternatives use a solid metallic pin, except for
alternatives A4 and A5 which use a hollow pin placed at a
specific distance from the cross section.

3 Results

Fuzzy Linguistic Variables are introduced to describe the
preferences of the decision makers. The variables used to
indicate the “preference” are taken from the Term Set {Very
Low (VL), Low (L), Medium(M), High (H), Very High (VH)}.
The variables describing the Fuzzy Variable for “suitability”,
are taken from the set {Very Poor(VP), Poor(P), Fair(F),
Good(G), Very Good(VG)}. Figure 7 shows the membership
functions for “Preference” and “Suitability”.

Table 2 Linguistic values for the preferences expressed by the decision
makers

DM1 DM2 DM3

C1 H L M

C2 M L VH

C3 H H H

C4 L VH M

C5 VH H M

C6 VH VH H

3.1 F-AHP

In the following section the application of the F-AHP method
to the specific case study is described.

3.1.1 Linguistic values assessed in relation to the
preferences of the decision makers

Linguistic values are provided by the decision makers
(Table 2), to evaluate the suitability of each alternative in
relation to the criteria, and Table 3 reports the corresponding
numerical values.

Hence, the Mean Operator is used to find the mean aggre-
gated preference weight W j as in Eq. (3). The W j matrix
is:

W j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.26 0.41 0.46 0.63
0.35 0.50 0.56 0.66
0.50 0.65 0.70 0.90
0.35 0.50 0.56 0.66
0.50 0.65 0.71 0.83
0.66 0.81 0.90 0.96

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Decision makers are then required to analyse the suitability
of the alternatives by linguistic terms.

If Sjmr = (ajmr, bjmr, cjmr, djmr) is defined as the suitabil-
ity assigned to the mth alternative (m = 1, 2, . . . , p; p = 6),

evaluated against the j th criterion ( j = 1, 2, . . . , i; i = 5),

by the rth decision maker (r = 1, 2, . . . , q; q = 3), the
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Table 3 Numerical preference values

DM1 DM2 DM3

0.50 0.65 0.70 0.90 0.05 0.20 0.25 0.40 0.25 0.40 0.45 0.60

0.25 0.40 0.45 0.60 0.05 0.20 0.25 0.40 0.75 0.90 1 1

0.50 0.65 0.70 0.90 0.50 0.65 0.70 0.90 0.50 0.65 0.70 .90

0.05 0.20 0.25 0.40 0.75 0.90 1 1 0.25 0.40 0.45 0.60

0.75 0.90 1 1 0.50 0.65 0.70 0.90 0.25 0.40 0.45 0.60

0.75 0.90 1 1 0.75 0.90 1 1 0.50 0.65 0.70 0.90

Table 4 Suitability Indices for
all the criteria (SIndexCj)

SI ndexC1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0.266 0.416 0.466 0.633
0.750 0.900 1.000 1.000
0.500 0.650 0.700 0.900
0.750 0.900 1.000 1.000
0.500 0.650 0.716 0.833
0.116 0.266 0.316 0.466

⎞

⎟
⎟
⎟
⎟
⎟
⎠

SI ndexC2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0.350 0.500 0.550 0.733
0.183 0.333 0.383 0.533
0.166 0.266 0.316 0.483
0.200 0.350 0.400 0.566
0.666 0.816 0.900 0.966
0.016 0.066 0.116 0.300

⎞

⎟
⎟
⎟
⎟
⎟
⎠

SI ndexC3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0.033 0.133 0.183 0.350
0.116 0.266 0.316 0.466
0.750 0.900 1.000 1.000
0.416 0.566 0.616 0.800
0.666 0.816 0.900 0.966
0.016 0.066 0.116 0.300

⎞

⎟
⎟
⎟
⎟
⎟
⎠

SI ndexC4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0.033 0.133 0.183 0.350
0. 0. 0.050 0.250
0.750 0.900 1.000 1.000
0.033 0.133 0.183 0.350
0.666 0.816 0.900 0.966
0.583 0.733 0.800 0.933

⎞

⎟
⎟
⎟
⎟
⎟
⎠

SI ndexC5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0.016 0.066 0.116 0.300
0.116 0.266 0.316 0.466
0.750 0.900 1.000 1.000
0.416 0.566 0.616 0.800
0.666 0.816 0.900 0.966
0.016 0.066 0.116 0.300

⎞

⎟
⎟
⎟
⎟
⎟
⎠

SI ndexC6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0.500 0.650 0.700 0.900
0.500 0.650 0.700 0.900
0.000 0.000 0.050 0.250
0.033 0.133 0.183 0.350
0.583 0.733 0.800 0.933
0.583 0.733 0.800 0.933

⎞

⎟
⎟
⎟
⎟
⎟
⎠

values of the suitability indices corresponding to the first cri-
terion are:

SC1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(0.25 0.40 0.45 0.60) (0.50 0.65 0.70 0.90) (0.05 0.20 0.25 0.40)

(0.75 0.90 1.00 1.00) (0.75 0.90 1.00 1.00) (0.75 0.90 1.00 1.00)

(0.50 0.65 0.70 0.90) (0.50 0.65 0.70 0.90) (0.50 0.65 0.70 0.90)

(0.75 0.90 1.00 1.00) (0.75 0.90 1.00 1.00) (0.75 0.90 1.00 1.00)

(0.75 0.90 1.00 1.00) (0.50 0.65 0.70 0.90) (0.25 0.40 0.45 0.60)

(0.25 0.40 0.45 0.60) (0.05 0.20 0.25 0.40) (0.05 0.20 0.25 0.40)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

3.1.2 Suitability indices are evaluated for all the criteria

The suitability indices (Sjm) are then evaluated for each cri-
terion, as in Eq. (4).

For example, for the first criterion and the first alternative,
the suitability index can be calculated as in Eq. (11) which
is the first row, of the m × 4 matrices in Table 4, in which
the suitability indices for all the alternatives and criteria are
depicted.

S̃11 =
∑q

r=1 S11r

q
= S111 ⊕ S112 ⊕ S113

q

=
(

0.25 + 0.50 + 0.05

3
,

0.40 + 0.65 + 0.20

3
,

×0.45 + 0.70 + 0.25

3
,

0.60 + 0.90 + 0.40

3

)

= (0.266, 0.416, 0.466, 0.633) (11)

These matrices can be collected into a single matrix, with six
criteria and six alternatives.

3.1.3 Fuzzy Score calculation

For the final ranking, a Fuzzy Score � is calculated as in
Eq. (6), for each alternative. For the first alternative, the value
of the Fuzzy Score is:

�̃1 =
(S11 ⊗ W1) ⊕ (S21⊗W2)⊕(S31⊗W3)⊕(S41⊗W4)⊕(S51⊗W5)⊕(S61⊗W6)

6
= (0.094 0.192 0.246 0.426)

The matrix corresponding to the evaluation of the fuzzy
scores, for all the alternatives, is shown in Table 5.

Each fuzzy score is a trapezoidal fuzzy number and con-
sequently can be graphically represented as in Fig. 8.

3.1.4 Defuzzification

The defuzzified values, calculated with the Weighted Aver-
age Method [as in Eq. (8)] are collected in Eq. (12), in which
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Table 5 Fuzzy Scores for all the alternatives

�_tot =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

�̃1

�̃2

�̃3

�̃4

�̃5

�̃6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0.094 0.192 0.246 0.426
0.119 0.236 0.298 0.472
0.200 0.337 0.422 0.589
0.120 0.244 0.306 0.495
0.276 0.458 0.558 0.732
0.108 0.199 0.259 0.423

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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Fig. 8 Fuzzy scores for the alternatives

each row corresponds to the mean value of the fuzzy score
of each alternative.

�mean =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.225
0.272
0.382
0.280
0.507
0.235

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(12)

Thus the elements of this vector can be ranked to search for
the maximum value among the scores, which corresponds to
the best alternative. In this case the fifth alternative is con-
sidered as the best, followed by the third and fourth.

3.1.5 Sensitivity analysis

A sensitivity analysis is thus performed to understand how
the overall decision is sensitive to small changes applied to
the weight judgments given to the criteria. When the defini-
tion of the importance of the weights is uncertain, the sensi-
tivity analysis seems to play a key role in selecting concept
designs.

Thus 12 experiments were conducted, and the results are
reported in Table 6.

Following the example of [31], the weights are set, one
at a time, as equal to VL, L, M, H, VH, for the first five
experiments. Then, from the sixth to the eleventh experiment,
each criterion is set at the highest score of the preference and
the others are set to the minimum score. This is done in order
to understand which criterion influences the process the most.

Regarding the twelfth experiment, the development cost
is set to the minimum score and the remaining ones to the

highest in order to understand how the result is influenced by
the cost criterion.

The results are depicted in Fig. 9. In eight of the twelve
experiments, A5 achieved the first position (66.7 % of pref-
erences), while in three experiments, A3 was the most pre-
ferred. Only in one experiment did the fourth alternative (A4)
achieve the highest score.

3.2 PuCC

The same sets of alternatives were adopted for both the PuCC
approach and the F-AHP experiment (Fig. 6).

A design concept was added to the set, to provide a basis
for comparison during the screening. First the A0 device,
which is currently on the market, was chosen as the datum
concept (Fig. 5).

As shown in Table 7, three iterations were made, with three
different datum concepts: at the first run, the original concept
was chosen as the datum and alternatives A2 and A4 were
eliminated. In the second run, the best scoring alternative
of the previous run (A5), was selected as the new concept
datum, while A1 was shown to be a weak design concept for
the heel tip device.

In the same run, A3 and A5 had the same ratings.
In the third run, keeping the second best alternative of

the previous iteration (A3) as the datum concept, another
alternative was eliminated.

The three alternatives A0, A3, A5 were therefore consid-
ered for further analyses. As A5 achieved the same score as
A3, and A0 reached a “-1” point, a further computation was
needed in order to get a more precise result and this involved
the criteria weights calculated in the previous step.

In Table 8 the criteria are compared pairwise and the
last column reports the priority vector. The reliability of the
assembly (C3) seems to rank higher than the minimal mod-
ification to the heel assembly (C6), while according to the
decision makers manufacturing ease (C4) was—equal to the
development cost (C5). Aesthetics (C2) was the least impor-
tant.

The alternatives which, from previous iterations, have
been designated as candidates for the selection process, are
thus rated against the given criteria. A maximum possible
vote is decided for each alternative (Table 9).

The normalized values of the alternative ratings and the
merit functions M Fi are reported in Table 10.

3.2.1 Sensitivity analysis

A sensitivity analysis is performed, as for the F-AHP method,
in order to understand how small changes in the importance
of certain attributes or in the alternative ratings influence the
results of the analysis.
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Table 6 Results of the experiments for the sensitivity analysis

Exp. n Definition Alternatives Ranking

A1 A2 A3 A4 A5 A6

1 WC1−C6 = VL 0.009 0.012 0.017 0.013 0.021 0.009 5>3>4>2>6>1

2 WC1−C6 = L 0.078 0.098 0.145 0.107 0.184 0.079 5>3>4>2>6>1

3 WC1−C6 = M 0.146 0.184 0.273 0.201 0.347 0.149 5>3>4>2>6>1

4 WC1−C6 = H 0.231 0.292 0.433 0.319 0.550 0.237 5>3>4>2>6>1

5 WC1−C6 = VH 0.326 0.412 0.610 0.449 0.775 0.334 5>3>4>2>6>1

6 WC1 = VH; WC2−C6 = VL 0.077 0.158 0.121 0.159 0.127 0.055 4>2>5>3>1>6

7 WC2 = VH; WC1,C3−C6 = VL 0.090 0.067 0.062 0.070 0.154 0.024 5>1>4>2>3>6

8 WC3 = VH; WC1−C2,C4−C6 = VL 0.034 0.057 0.164 0.104 0.154 0.024 3>5>4>2>1>6

9 WC4 = VH; WC1−C3,C5−C6 = VL 0.034 0.015 0.164 0.037 0.154 0.128 3>5>6>4>1>2

10 WC5 = VH; WC1−C4,C6 = VL 0.023 0.057 0.164 0.104 0.154 0.024 3>5>4>2>6>1

11 WC6 = VH; WC1−C5 = VL 0.113 0.116 0.021 0.037 0.140 0.128 5>6>2>1>4>3

12 WC5 = VL; WC1−C4,C6 = VH 0.312 0.367 0.463 0.357 0.643 0.320 5>3>2>4>6>1

Fig. 9 Results of the sensitivity analysis for the Fuzzy-AHP
application

This is particularly relevant for the weights, due to the
subjective nature of the judgments and to the fact that the
final values the two candidates (A0 and A5) were similar in
terms of merit function.

Despite small changes in the weights of the attributes, the
solution that maintains the same position in the ranking is
said to be stable and, thus, should be selected as the preferred
solution. As in [10], two investigations are carried out: the
first regards the change in the weights of the attribute values,
and the second in the rating of the alternatives.

In the former, the changes are made to the elements of the
importance vector, by altering them by +5 % in favour of the
second candidate, and then checking whether the original
ranking of the alternatives changes. The results shown in

Table 11, highlight that the ranking result is stable and is not
affected by the small changes to the attribute weighting.

An additional test is performed to investigate the stability
of the solution to small changes in the alternative ratings.
Also in this case, the merit function values, in terms of both
the increase and the decrease in 5 % of the ratings of the
alternatives, did not modify the ranking order of the candidate
solutions (see Table 12).

The merit functions of the first alternative rank higher
than the second alternative, both with a 5 % decrement and
increment in ratings. The solution is thus stable and the cor-
responding alternative can be selected for subsequent devel-
opment.

4 Discussion

The comparison strategy described above presents some
limitations that are worth highlighting.

Looking at the problem from a general perspective, a cam-
paign of complex case studies needs to be carried out, in order
to propose comprehensive conclusions. As mentioned in the
introduction, the aim of this paper is to compare the two
selection approaches considered (F-AHP and PuCC) on the
same case study, rather than obtaining a complete validation
of the individual methods. While the validity of both these
methods has been widely confirmed in the literature, a com-
parison of these specific methods, on the same case study, is
novel.

The definition of complexity is a debated problem in lit-
erature.

As is well explained by Eckert et al. [34], the definition of
complexity within the engineering design domain is linked to
several aspects. For example, the uncertainty in information
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Table 8 Comparison between criteria and relative importance vector

C1 C2 C3 C4 C5 C6 Relative importance Importance vector

C1 1 1 0 0 0 0 2 0.095

C2 0 1 0 0 0 0 1 0.047

C3 1 1 1 1 1 1 6 0.285

C4 1 1 0 1 0.5 0 3.5 0.166

C5 1 1 0 0.5 1 0 3.5 0.166

C6 1 1 0 1 1 1 5 0.238

Total: 21

Importance vector (I.V.) Normalized relative importance

Table 9 Ratings of the selected alternatives against each attribute

A0 A3 A5

C1 0 7 8

C2 7 3 10

C3 8 8 8

C4 8 7 4

C5 9 9 6

C6 10 1 10

MAX-RATING 10 10 10

Table 10 Merit Functions for ranking the alternatives

A0 A3 A5 Importance
vector (I.V.)

C1 0 0.70 0.80 0.095

C2 0.70 0.30 1 0.047

C3 0.80 0.80 0.80 0.285

C4 0.80 0.70 0.40 0.166

C5 0.90 0.90 0.60 0.166

C6 1 0.10 1 0.238

M Fi 0.783 0.600 0.757

Ranked 1 3 2

alternatives

regarding design features can lead to a difficult prediction
of the behavior of the final product. Moreover, in a complex
product, where the parts are closely linked, a change to one
individual part, results in modifications to the other parts in
the assembly.

Other aspects of complexity include a higher number
of alternatives/criteria or the presence of interdependencies
between the criteria. Several examples of the former aspect
have been proposed in the literature. In [27] for example, a
tuned gyroscope is selected from 15 alternatives against 18
criteria. Other selection problems, characterized by interde-
pendencies between criteria are often solved by more com-
plex selection methods, such as Saaty’s Analytic Network
Process (ANP).

Our case study is not characterized by a high level of uncer-
tainty and number of alternatives but the strict set of speci-
fications and constraints, and the close correlation between
parts guarantee a not trivial degree of complexity.

In addition, very complex problems represent only a por-
tion of daily industrial practice. Therefore, a comparison
strategy might be more effective if it focused on more stan-
dard problems, rather than deepening more complex, but
unusual, ones. This should result in a simplification and
acceleration of the knowledge transfer of selection methods
to industrial practitioners.

In terms of a detailed analysis of F-AHP, another
limitation is in the choice of suitable preference aggrega-
tion functions. In fact, a trade-off strategy between design
criteria would be better at describing the engineering design
problems. There are two design strategies that perform trade-
offs [36]: non-compensatory and compensatory. The non-
compensatory strategy is a more conservative approach. It
achieves a trade-off between design parameters, to improve
the goals that generally are less easy to achieve thereby lead-
ing to a better the design. In the compensatory strategy, on
the other hand, the priorities of some of the weaker goals can
be reduced and are compensated for by a slight increase in
other ones. This is a more “aggressive” approach. These two
approaches should be considered as alternative preferences
during the decision process.

Many authors have dealt with this problem, for example
Scott and Antonsson [37] introduced the Method of Impre-
cision (MoI), based on the mathematics of fuzzy sets, for
modelling design preferences in the case of imprecision and
uncertainty. This method provides trade-off functions for
aggregating decision maker’s preferences in an overall one.
This trade-off consists of building up several functions into
one individual function that describes the overall preferences.
This function ranges from the non-compensating min func-
tion through a partially compensating Pπ function, to the
totally compensating max function.

Other aggregation functions have been considered to rep-
resent trade-offs in engineering design, for example t-norms
and t-conorms [38]. Unfortunately, they do not satisfy the
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Table 11 Sensitivity of solution to changes in the relative importance of attributes

A0 A3 A5 Import. vector
(I.V.)

I.V. after sensitivity
analysis

Changes

C1 0 0.70 0.80 0.095 0.045 IV−5 %

C2 0.70 0.30 1 0.047 0.098 IV+5 %

C3 0.80 0.80 0.80 0.285 0.236 IV−5 %

C4 0.80 0.70 0.40 0.166 0.217 IV+5 %

C5 0.90 0.90 0.60 0.166 0.217 IV+5 %

C6 1 0.10 1 0.238 0.288 IV+5 %

MFi before sensit. an. 0.783 0.600 0.757

MFi after sensit. an. 0.913 0.625 0.827

Table 12 Evaluation of Merit Function, with a 5 % decrease/increase
in the ratings of the two best alternatives

A0 A5

5 %dec 5 %inc 5 %dec 5 %inc

C1 0.783 0.788 0.757 0.757

C2 0.783 0.784 0.757 0.757

C3 0.782 0.785 0.756 0.759

C4 0.783 0.784 0.756 0.758

C5 0.783 0.784 0.756 0.758

C6 0.782 0.785 0.756 0.758

axioms for appropriate aggregation functions, such as annihi-
lation, idempotency and monotonicity, as extensively showed
in the literature [37].

In this paper we proposed a simpler, but not simplistic,
approach for aggregating preferences. Trapezoidal Fuzzy
Numbers were chosen to translate verbal judgments into
fuzzy numbers. In addition, a weighted sum approach is used
to aggregate functions for the overall preference represen-
tation. As noted in [37], the weighted sum approach is a
compensatory strategy. Thus, the use of this kind of function
to aggregate decision makers’ preferences, could provide a
partial view of the group’s overall preference.

5 Conclusion

Two selection methods, PuCC and F-AHP were applied to
the same design problem. The criteria used to compare the
methods are summarized in Table 13.

Regarding the calculation carried out with the PuCC
method, inclusion of the benchmark datum concept A0 influ-
ences the results. In fact it achieved the maximum score, fol-
lowed by alternative A5 (Fig. 6), which, in contrast, seems
to be the preferred alternative in the F-AHP application.

In the PuCC method however, the values of the merit
functions relative to alternatives A0 and A5 were similar
(0.783 against 0.757 in Table 11). Alternative A5 can there-
fore be chosen as the preferred option of the innovative
proposals.

Although F-AHP needs more mathematical calculation
than PuCC, and thus seems more time-consuming, once the
software is written, F-AHP is easier—to use in more appli-
cations than the PuCC method.

On the other hand, PuCC is a three-step method, and con-
sequently is very concise. However, since PuCC requires
interaction between team members, the time spent in team
discussion, which is useful for filling in the scoring matrices,
needs to be accounted for.

For the total computational time required, we define the
time elapsed between the insertion of the first data and the
attainment of the final result.

In this specific case (six alternatives and six criteria) the
effective computational time for FAHP lasts fractions of a
second (with an AMD 64 Intel, 2.53 GHz processor). In any
case, most time is spent in entering the data, which in terms
of quantity, depends on the size of the problem. This time
period, which may increase with the number of criteria and
alternatives, in our case took under 10 min.

In terms of Pugh’s matrices, the time needed increases
considerably. The matrices and the related steps of calcu-
lation were reported on a Microsoft Excel� spread sheet.
In this case, most of the total computational time is spent on
team discussions before each scoring session. In our case, the
discussion took about 20 min per run, for a total of almost
one hour, for three runs of the matrices.

In the PuCC method, once the process is finished,
the screening and scoring matrices can only be partially
reprocessed for further problems. In fact each problem pro-
vides different results from the team discussions and gener-
ates different “hybrid” solutions.

In the screening phase of the PuCC method, the voting
procedure is not used, thus the decision makers are allowed
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Table 13 Pros and cons of the FAHP and the PuCC methods for selection of concept alternatives

Criteria Methods

F-AHP PuCC

Advantages Drawbacks Advantages Drawbacks

Computational effort Analytical
process → well
suited for soft-
ware implemen-
tation

Pairwise comparison
takes too much time
in the case of several
alternatives

Simple mathematical
passages

Not suitable for
software imple-
mentation

Simple +/−/0
scores for filling
in the matrices
Pairwise compar-
ison is easy even
with many alter-
natives and crite-
ria

Suitability for the
early design phases

Verbal judgments
are nearer than
numbers to how
humans reason

Computation is
too precise and
too mathematical

Heuristic thinking
and communication
are facilitated

–

Suitability for group
decision making

Takes accurate
account of the
individual deci-
sion maker’s
viewpoint

– Team discussion
facilitates communi-
cation

The divergences
could be not over-
come

Ease of application – Not intuitive due
to its mathemati-
cal framework

More intuitive
due to a discur-
sive structure

–

to use an “on/off” strategy, which is based on a simple com-
parison between each alternative and the datum concept. This
involves clear judgments, avoiding the use of numerical vot-
ing.

Thus a better solution for the voting procedure is to use
a fuzzy environment, which is able to better describe the
uncertainties of the preliminary design stages.

Pugh’s Controlled Convergence method is particularly
suitable for a large group of alternatives and criteria, how-
ever no control is provided for group decision making. In
general, as shown by Frey et al. [23], in Pugh’s method,
the experts have a previous team discussion, in which any
controversies are generally resolved. The experts then draw
up Pugh’s evaluation matrices and, in the case of persis-
tent disagreements, they enter an “S” (or 0)—which means
“similar to” the datum concept—in the corresponding cell
of the matrix [23]. In general, when many alternatives
need to be compared, the AHP-based methods do not seem
convenient, as the alternatives need to be pairwise com-
pared against each criterion, as discussed extensively in the
literature.

On the other hand, the analytical framework of the
F-AHP makes it suitable for software implementation,
resulting in a considerable increase in the speed of the
application.

In addition, the choice of a fuzzy-environment is more
suitable for pinpointing more precisely and analytically the
decisions and viewpoints of the individual decision maker,
than with a team discussion.

The question of which decisional method best satisfies
the needs of concept selection is hard to answer with just
one solution. In our opinion the final choice should be made
by practitioners, according to their specific problems. This
could be done after an intensive knowledge transfer, from
researchers in engineering design and practitioners, in order
to enhance a strategic and profitable exchange of information.
This could help both designers to enrich their experience
and industrial practitioners to increase their familiarity with
decision support tools.
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